Please use this identifier to cite or link to this item: http://dspace.univ-usto.dz/handle/123456789/223
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoumediene, Mohammed-
dc.contributor.authorJean-Philippe Lauffenburger-
dc.contributor.authorJérémie Daniel-
dc.contributor.authorChristophe Cudel-
dc.contributor.authorOuamri, Abdelaziz-
dc.date.accessioned2015-06-16T14:31:25Z-
dc.date.available2015-06-16T14:31:25Z-
dc.date.issued2015-06-16-
dc.identifier.urihttp://dspace.univ-usto.dz/handle/123456789/223-
dc.description.abstractThis paper presents an object tracking algorithm using belief functions applied to vision-based traffic sign recognition systems. This algorithm tracks detected sign candidates over time in order to reduce false positives due to data fusion formalization. In the first stage, regions of interest (ROIs) are detected and combined using the transferable belief model semantics. In the second stage, the local pignistic probability algorithm generates the associations maximizing the belief of each pairing between detected ROIs and ROIs tracked by multiple Kalman filters. Finally, the tracks are analyzed to detect false positives. Due to a feedback loop between the multi-ROI tracker and the ROI detector, the solution proposed reduces false positives by up to 45%, whereas computation time remains very low.en_US
dc.language.isoenen_US
dc.publisherUniversity of sciences and technology in Oranen_US
dc.subjectassociation,en_US
dc.subjectdata fusionen_US
dc.subjectmultitarget trackingen_US
dc.subjecttraffic sign recognition (TSR)en_US
dc.titleMulti-ROI Association and Tracking With Belief Functions: Application to Traffic Sign Recognitionen_US
dc.typeArticleen_US
Appears in Collections:Thèses doctorat

Files in This Item:
File Description SizeFormat 
Article_boumediene1.pdf1,26 MBAdobe PDFView/Open
Article_boumediene2.pdf1,26 MBAdobe PDFView/Open
These_BOUMEDIENE_Mohammed.pdf14,5 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.