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Abstract This paper describes an efficient method for the
detection of triangular traffic signs on grey-scale images.
This method is based on the proposed RANSAC symmetric
lines detection (RSLD) algorithm which transforms trian-
gle detection into a simple segment detection. A multi-scale
approach allows the detection of any warning and yield traffic
signs, whatever their distance to the vehicle. This algorithm
is applied to a set of selected corners obtained with a coding
gradient method. Baseline detection uses the scale of selected
triangles to confirm the presence of traffic signs. The study
demonstrates that RSLD is a low computation method as
compared to standard triangle detection. The performance of
the method proposed is compared with recently published
methods on road sign databases, which use colour infor-
mation. An equivalent detection rate is obtained with this
algorithm, working on grey-scale images. This algorithm is
implemented and runs in real-time at 30 frames per second.
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1 Introduction

Traffic signs allow the regulation and control of the traffic
flow. These signs are important for road users: drivers or
pedestrians. Although traffic signs are clearly visible along
the roads, the driver can be distracted and miss signs, which
can cause dangerous situations. Therefore, a traffic sign
recognition (TSR) system assists the driver and gives him
information about potentially dangerous situations.

Two main approaches to TSR systems are proposed in
the literature: the global positioning system (GPS)-based
approach and the vision-based approach. The first one recog-
nises the current traffic signs by extracting information from
the GPS navigation data. The disadvantage of this approach is
that the GPS map is neither complete nor up-to-date and there
are numerous situations where the GPS signal is not avail-
able, e.g., in a tunnel. Therefore, the vision-based approach
is necessary. This second approach uses an optical sensor
(vehicle-mounted camera) and locates and recognises the
traffic signs appearing in the captured frames. Recently, the
MIPS (Modélisation, Intelligence, Processus et Systémes)
laboratory has tried to merge both systems in order to design
more robust TSR systems [8].

This paper focuses on a computer vision approach. Two
distinct steps usually compose TSR system by vision, which
are detection and recognition. First, regions of interest (ROI)
containing the candidate traffic signs are detected in the cur-
rent frame. This detection is based on the sign characteristics,
such as colour and shape, which help to distinguish traffic
signs from other objects appearing in the road environment.
Then, recognition or classification of the ROIs consists in
identifying sign pictograms figuring in each ROI.

Each traffic sign is characterised by its colour, shape and
pictogram. In the literature numerous methods use colour
information to extract the ROIs containing road signs. There
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1722 M. Boumediene et al.

are different colour spaces for segmentation, the one which
is most often used is the hue-saturation-value (HSV) space
[22,25,27]. A comparison between various segmentation
techniques using different colour spaces for traffic sign detec-
tion is presented in [13]. The results show that normalization
improves performance and represents a low cost operation.

Advanced driver assistance systems (ADAS) can contain
up to three different applications: TSR, pedestrian and lane
detection. Usually, pedestrian and lane detection use only a
grey-scale camera and only TSR can use colour information.
But colour information is sometimes perturbed by traffic sign
surface reflectance which depends on the weather, daylight
conditions and the age of signs. This is one of the reasons
why a grey-scale method is proposed here, which offers the
same performance as colour methods.

The aim is to detect triangular traffic signs in a context
of grey-scale images, using the original operator RANSAC
symmetric lines detection (RSLD) which exploits the sym-
metry of a triangle. This paper is organised in three sec-
tions: Section 2 presents a state of the art of related studies.
Section 3 details the proposed traffic sign detection and the
results are presented in Sect. 4, followed by a conclusion and
discussion on future research work.

2 Related studies

The methods proposed in the literature can be classified into
two categories: the Hough-like approaches and the template
matching approaches. The Hough transform is a popular tool
in computing vision, e.g., for line detection and circle detec-
tion. For the detection of traffic signs, a voting procedure is
carried out in a parameter space, from which the ROIs are
obtained by computing the local-maxima in the parameter
space. For the template matching approach, a set of shape
sign templates is used for detection. Matching can be per-
formed through correlation or by a classifier, such as the
support vector machine (SVM). The following paragraphs
describe recent algorithms, as well as colour or grey-scale
images.

Garcia-Garrido [12] uses the classic Hough algorithm for
searching straight lines in order to detect triangular signs.
The purpose is to detect three straight lines intersecting each
other, forming a 60◦ angle. The advantage of the method
proposed in [12] is that it can work day and night with no
change of the algorithm. This is possible because the edge
points used by the Hough transform are obtained with an
extended Canny filter. The two Canny-thresholds are adapted
by the image histogram.

In [7], a colour segmentation is performed to obtain a
binary image with selected regions of the candidate signs. A
simple threshold method helps to perform a segmentation in
the hue-saturation-intensity (HSI) space. The salient points

(a) (b)

(c)

Fig. 1 The voting scheme of VBT and STUVT. a Scheme for the
voting method of VBT. b Scheme for the voting method of STUVT
[16]. c Example of Vaccu and Baccu [2]

related to the shape of the traffic sign are detected in the binary
image by a detector of local binary features (DLBF) [7]. The
set of the salient points are clustered for relating single points,
one at each corner. The author does not well explain how
the corners are connected for the recognition of triangular
shapes.

The symmetric nature of triangular shapes is used in [23].
An extended fast radial symmetry transform is proposed, the
regular polygon detector (RPD), which computes the possi-
ble shape centroid locations into the grey-scale image. For
regular polygons with n corners, the radius is defined as the
perpendicular distance from an edge to the centroid. As for
detecting the circle shape, each edge point votes for a poten-
tial radius along the line of the gradient vector. All votes are
accumulated into a matrix and are used with the equiangu-
lar information of the regular polygons for computing the
centroid of the shape.

The vertex and bisector transformation (VBT) is defined
in [2]. This transformation is based on the image gradient and
produces two arrays: Vaccu and Baccu, accumulating evidence
of respectively the angle vertex and the angle bisector. The
pair edge points (Pi , Pj ) with non-parallel orientation gradi-
ent vote for the vertex, (A) in Fig. 1a, to which they belong.
This pair also votes for the bisector (AB) and helps to obtain
two accumulators (Vaccu and Baccu). The centre of the trian-
gular sign is represented by the local maxima of Baccu and
its corners are determined by the local maxima of Vaccu (see
Fig. 1c).

Similar to VBT, a single target vote for upright triangles
(STVUT) is proposed in [16]. The difference from VBT is
that the STUVT computes one accumulator only and the vote
relates triple edge points with pairwise non-parallel orienta-
tions (see Fig. 1b). To decrease the computational time of the
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voting process, a heuristic method is proposed to choose the
appropriate triple edge points. Pair edge points (Pi , Pj ) are
chosen in the same row image with mirror orientations. The
position of the third edge point Pk is between Pi and Pj .

Several preprocessing steps are proposed and evaluated
in [16] to increase the performance of the Hough-like meth-
ods. The preprocessing steps transform the colour image into
a gradient image which assigns magnitude and orientation to
significant pixels, e.g., red pixels which are related to warn-
ing traffic signs. Learned colour gradient (LCG) and expected
orientations (EO) provide best results with RPD, VBT and
STVUT [16]. LCG produces the gradient image according to
local colour distribution. EO is a similar step, but orientation
gradient is introduced to enhance triangles detection.

The colour and shape characteristics are used in [11].
Colour segmentation helps to extract the ROIs containing
possible traffic signs from the rest of the image. A quad-tree
histogram is applied to segmentation which, uses recursively,
a division of the image into quadrants until all elements are
homogeneous. To classify the ROIs into a particular group
of signs, e.g., triangular signs, the histograms of oriented
gradients (HOG) is used as descriptor.

A genetic algorithm is used in [9] to search for possible
signs in the image. First, an analysis of the hue and saturation
components of the image helps to detect the regions which
satisfy some colour restrictions. Based on the perimeters of
these regions, the genetic algorithm performs a global search
to detect the traffic signs where each individual is represented
by a sign model with a certain position, a scale and a rotation.

Two steps are proposed in [30] for the detection of warning
traffic signs. In the first step, a linear SVM classifier is used,
and it is trained with the HOG features of all types of triangu-
lar traffic signs. To remove false detections, a blackhat filter
[30] is applied to the image by emphasizing the dark pixels
with high contrast in their local environment. Therefore, the
border and the pictogram of the traffic sign are emphasised
and the result is used to eliminate false detections.

Alefs et al. [1] proposes a matching method based on
an edge orientation histogram (EOH). Using the grey-scale
image, a Gaussian pyramidal of three levels is created. At
each level, a scanning window is used, and the matching mea-
surements, between a set of templates and the region defined
by the scanning window, are analyzed in order to determine
the presence or absence of traffic signs. The matching mea-
surements are based on edge-orientation histograms defined
on different subparts which represent a template.

The local contour pattern operator (LCP) is defined
in [19,26] as a measurement over contour images to com-
pute the local geometrical structures. For each contour point,
obtained with the Canny filter, the local geometrical struc-
ture is represented by a LCP code-word. In [19,26], 30 LCP
code-words are used to represent 4 sets of orientations. The
scanning windows are subdivided into subparts according to

geometrical structures defining the triangular signs and cir-
cular signs. The four-bin histogram, related to the four sets of
orientations, is computed on each subpart and used to detect
the traffic signs. In [19], the checking of the candidate signs
is based on quantum features which are learned by AdaBoost
algorithm. Similar to Haar-like features, quantum features are
a simple intensity level comparison between pixels which are
not adjacent.

The method proposed here cannot be classified as a
Hough-like approach or template-matching approach. It
maybe be close to Hough-like approach because it is based
on line fitting, but there is no voting process. The main idea is
to use the principle of coordinates inversion combined with
line detection to detect the symmetry of triangles. The inter-
est of the method is to work on grey-scale images with a
final algorithm easily implementable in real-time, and with
performance similar to that of the latest methods published.

3 The method proposed

The authors propose a method to detect triangular traffic signs
in four steps. This method is based on the Harris corner detec-
tor and an original algorithm, RSLD. Figure 2 shows the
four steps proposed in the algorithm. The method starts by
computing the gradient image following x and y directions
(Eq. 1). The first step consists in computing the corners inside
the images, using the well-known Harris detector to ensure
the extraction of triangular traffic sign corners. The second
step uses corner coding in order to select up and down corner

Fig. 2 Diagram of the algorithm proposed
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1724 M. Boumediene et al.

candidates related to triangular shapes oriented upwards and
downwards, respectively. The third step proposes the RSLD
method for traffic sign triangular shape detection. The final
step checks the presence of triangle baseline to confirm the
triangular traffic sign detection.

Ix = ∂ I

∂x
, Iy = ∂ I

∂y
. (1)

3.1 Corner detection

For the detection of triangle corners in images, the Harris
detector [15] is one of the most efficient methods with a
low computation time. The Harris detector is based on the
covariance matrix M (Eq. 2). This matrix describes the gradi-
ent distribution in a local neighbourhood for each pixel. The
neighbourhood depends on the Gaussian window W used.
The eigenvalues, λ1 and λ2, of this matrix represent the prin-
cipal gradient components in two orthogonal directions. Both
significant eigenvalues indicate the presence of two main
directions in the neighbourhood, which can describe a cor-
ner at the corresponding position. Harris [15] proposes an
alternative to eigenvalue computation with the criterion R
described in Eq. 3 where k is a scalar fixed at 0.04.

I 2
x = I 2

x ⊗ W, I 2
y = I 2

y ⊗ W,

Ix Iy = Ix Iy ⊗ W,

M =
[

I 2
x Ix Iy

Ix Iy I 2
y

]
. (2)

(λ1 + λ2)
2 = T r2(M),

λ1 ∗ λ2 = Det (M),

R = Det (M) − k ∗ T r2(M). (3)

The set of corners are computed by finding the local-
maxima in the R matrix. An example of detection is shown
in Fig. 3a.

3.2 Corner coding

The Harris detector is usually employed to compute geomet-
ric relations between images or in image registration. These
methods associate feature vector descriptors to describe each
corner in order to perform a comparison with representative
vectors contained in a database [20]. One major limitation
of descriptors for traffic sign corners is the symmetric neigh-
bourhood considered to create them. For example, the Harris
feature vector descriptor (HFVD) proposed in [29] is based
on a circular neighbourhood partition. This approach is not
adapted for traffic sign detection because the feature descrip-
tor will not only include information of road signs but also of

Fig. 3 Example of triangular traffic sign detection. a Results of Harris
detector (step 1). b The corner candidates (step 2). c Results of the
RSLD proposed (step 3). d Results of baseline detection (step 4)
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Fig. 4 The edge angle space divided into four bins. Classes 3 and 4
represent the horizontal and the vertical pixel edges, respectively. The
diagonal pixel edges are represented by classes 1 and 2

the background scene. This is the reason why an alternative to
centered descriptors is proposed: coding the main directions
attached to a corner in an appropriate neighbourhood.

The aim is to detect up and down corners related to trian-
gular shapes oriented upwards or downwards, respectively,
using gradient images (Ix , Iy) previously computed to iden-
tify both types of corners. A coded image is generated, by
using Eq. 4, where each pixel is coded according to its orien-
tation. Intermediate calculations available in the Harris com-
putation are used to define A = (I 2

x > T ), B = (I 2
y > T ),

and C = (Ix Iy < 0). T is a threshold used to select a
significant gradient; Its value is set to 1,000. Five classes
{0, 1, 2, 3, 4} are defined. The non-edge pixels are coded by
class 0, and the edge pixels are coded following the four
directions depicted in Fig. 4. The diagonal edges are repre-
sented by classes 1 and 2. Finally, the horizontal and vertical
edges are represented by classes 3 and 4.

Class = A B (2 − C) + 3A (1 − B)

+4B (1 − A) (4)

The aim of corner coding is to select corner candidates
which represent triangular traffic sign positions. This filtering
is based on coded images. For each corner position reported
in coded images, an up or down corner is detected according
to class distribution. Two class distributions are proposed in
adapted subregions. Figure 5a shows subregions for up corner
coding. In this case, a subregion concerns the neighbourhood
under the corner position where the shape information of road
signs must be found. For each corner, if class 2 is dominant in
the South-West (SW) subregion and class 1 in the South-East
(SE) subregion, then the corner is classified as an up corner.
A similar process is applied for down corners in agreement
with the subregions shown in Fig. 5b. Figure 6 illustrates
the result of the corner coding step applied to a synthetic
image, and Fig. 3b on a road scene image. Figure 7 shows
the number of remaining triangular traffic sign candidates
compared to the Harris corner number. The corner coding
is able to select candidate corners only, and to significantly

(a) (b)

Fig. 5 Class distribution used for corner coding. a Class distribution
for a triangle oriented upward. b Class distribution for a triangle ori-
ented downward

Fig. 6 Corner selection based on corner coding

Fig. 7 Results of corner coding on 32 images of Grigorescu’s database
of traffic signs [14]. The top curve represents the number of detected
corners with the Harris detector. The bottom curve represents the num-
ber of selected corners with the proposed corner coding method

reduce the number of corners to be analyzed in the next steps,
which should confirm that a corner represents a triangular
traffic sign or not.

3.3 RSLD for triangle identification

Principle The methods described in [5,21,23,24], detect the
borders of traffic signs with a line detector and analyze the
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(a) (b)

Fig. 8 The inversion around the identified corners. a Represents a
vertical y-coordinate inversion applied around the selected corners. b
Represents a vertical y-coordinate inversion applied around the down
corners

relative positions of these lines with different criteria such as
symmetry, the distance to the border or the position of the
intersection points. To reduce the computation time for line
detection, the RSLD method based on RANSAC algorithm
has been designed for this application.

The RANSAC algorithm is a well-known, powerful
method to fit a model in a set of N points containing data
related to the model (inliers) and data which are not related
to the model (outliers). It is an iterative algorithm, composed
of two mains steps. The first step consists in generating an
appropriate model based on n samples chosen randomly from
a set of points. The second step evaluates the computed model
for the N points of the dataset.

The idea is to straighten the two diagonal sides of trian-
gular shapes. This helps to detect only one segment instead
of two with a RANSAC algorithm. This principle is illus-
trated in Fig. 8a, b. For up corner candidates, a simple inver-
sion of the y-coordinate applied on coded pixels of class 2
transforms the two diagonal segments into a single segment.
For down corner candidates, the same inversion is performed
with coded pixels of class 1. This approach converts the sym-
metry detection into a simple line detection while preserv-
ing the symmetry criteria. Indeed, if the corner candidate is
really positioned at the top or bottom of a triangular shape,
this method will produce a long segment centered around this
corner. If the number of inliers is lower than a threshold s, the
detected segment is then too short and the corner is not a true
candidate. The threshold s is function of detection scale and
its value is chosen from the receiver operating characteristics
(ROC) curve as it is discussed in Sect. 4.

Interest of the proposal There are two advantages which jus-
tify this method: accuracy is better, depending on the outliers,
and the number of computations is reduced as compared to
other methods.

Fig. 9 Synthetic images. The circles represent inliers, real data related
to the triangle’s sides with Gaussian noise, and the asterisks points
represent outliers which are uniformly distributed. a Represents two
sides of a triangle and b Represents these sides after applying a y-
coordinate inversion

Concerning the accuracy, this approach was compared
with the separate detection of the two segments, using
RANSAC to retrieve one or both of the segments. This
comparison was performed by adding outliers to a syn-
thetic image containing two segments representing the diag-
onal sides of a triangle. For each measurement, the RMSE
(root-error-mean-square) geometric distance was computed
between the segment(s) model and the segment(s) detected
according to the level of the outliers added to the syn-
thetic image. The comparison is performed between two
approaches:

– without the y-coordinate inversion: detection of two seg-
ments using the RANSAC method for each segment. The
adapted subregions were defined around the corner can-
didate (see Fig. 8) and RANSAC was applied to each
region separately.

– with the y-coordinate inversion: detection of a single seg-
ment with the RANSAC method applied to appropriate
subregions after the y-coordinate inversion process.

Figure 9 shows an example of corresponding synthetic
images with and without the y-coordinate inversion method.
Inliers were generated from equations: tan(π

3 ) x + y = 0 and
− tan(π

3 ) x + y = 0 with Gaussian noise (σ = 3) added to
their coordinates. This noise represents perturbations, which
generates realistic simulations. The measurements were per-
formed according to outliers percentage added. For a given
outlier percentage, the experiment was repeated 1,000 times
to obtain representative results.

The results of these experiments are reported in Fig. 10.
The possibility of easier detection of a long single segment
instead of two short, ones is thus confirmed. The curve pre-
senting the lower RMSE is the one where the y-coordinate
inversion was performed.
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Fig. 10 Comparison between RANSAC detection with and without
the y-coordinate inversion
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Fig. 11 Computing time of RANSAC detection with and without
y-coordinate inversion. The number of inliers is of 30

Concerning the cost of computation, the number of iter-
ations with and without the coordinate inversion was com-
pared. The number of RANSAC iterations K (Eq. 5) depends
on the percentage of the inliers w, complexity of the model n
and probability p that RANSAC gives a suitable model [10].
For line detection, as 2 points are enough to model a line,
n = 2. The probability is chosen such that (1 − p) = 10−3,
which is a commonly used value for RANSAC. With these
values, K = 24 if w = 50 %, and K = 687 if this percentage
decreases to 10 %.

K = log(1 − p)

log(1 − wn)
(5)

The RANSAC computation time T can be estimated using
Eq. 6 [6] where tg and te represent, respectively, the cal-
culation time for the two RANSAC steps: generation and
evaluation.

T = K (tg + N te) (6)

The detection of diagonal triangle sides need the RANSAC
algorithm to be applied two times in the subregions described
in Fig. 8a. First in subregion C and secondly in D. Here, A
and B are unused subregions. C and D are considered to con-
tain N

2 samples each. The global computation cost TC D of
this detection is then defined as the sum of the computation
time for C and D subregions:

TC D = TC + TD,

= 2 K

(
tg + N

2
te

)
,

= K tg + T . (7)

The RANSAC with y-coordinate inversion used here, is
applied to subregions A and D and the number of points in
the dataset is then N . The duration TAD of the method can be
obtained by adding the y-coordinate inversion time ti to T .

TAD = ti + T (8)

As the y-coordinate inversion is performed once, and not
at each iteration, it can be concluded that ti < K tg. In
this case TAD < TC D , which shows that the proposed
method is faster than two successive RANSAC segment
detections. Figure 11 compares the computation cost, with
Matlab scripts, of both methods according to the outlier per-
centage. A region of interest having a 50 × 50 pixels is used
for this simulation (see Fig. 9), with a realistic number of
inliers (30). The results confirm that the proposed method
needs low computation time than two segments detection. In
practice, for real images, the computation cost is reduced by
40 %.

Multi-scale detection The traffic sign scale in images dep-
ends on its distance from the camera. To use the present
RSLD method efficiently, the region around the candidate
corner where the inversion is applied must be defined pre-
cisely. The region size must correspond to the road sign’s
dimensions and without depth information, it is impossible
to estimate this size. A multi-scale detection process helps
to solve this problem. First, a small region r1 is centered
on the selected corner where the corresponding points for
RANSAC algorithm are extracted, as shown in Fig. 12. If
no line is detected, there is no triangle related to this candi-
date corner. Otherwise, there remains the length of the line
detected in r1. This process is repeated in regions r2 to r5
until the length line L is stabilised, as shown in Fig. 12.
This multi-scale detection helps to estimate the resolution
of potential triangles detected and gives the diagonal side
length which is L

2 . At this stage, only diagonal triangle sides
are detected and it is necessary to confirm that this shape is
a triangular traffic sign with a baseline detection. A typical
example is given in Fig. 3c.
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Fig. 12 Multi-scale detection

(a)

(b)

Fig. 13 Baseline detection. a The horizontal subregion and its his-
togram for the triangle oriented upwards. b The horizontal subregion
and its histogram for the triangle oriented downwards

3.4 Baseline detection

In road scene images, numerous objects present shapes which
are similar to triangular traffic signs. With two diagonal sides
and a symmetrical appearance, they can be detected thanks to
the previous step (see Fig. 3c). These objects are then consid-
ered as false positive detections and increase the computation
time during the traffic sign recognition phase. The aim is to
eliminate such false detections in a final step which consists
in triangular shape baseline detection. This step exploits the
length L

2 obtained previously with the multi-scale detection.
First, a horizontal subregion at L

2 sin(π
3 ) distance from the

candidate corner position is defined, as illustrated in Fig. 13.
Secondly, as the sides of an equilateral triangle are equal, this
subregion contains a baseline if the number of pixels from
class 3 is L

2 ± ε, where ε = 0.05 L .

4 Evaluation and discussion

This section, presents the evaluation of the method proposed
by giving the ROC curve and by comparing its performance
with that of methods presented in recent publications [2,16,
23]. The comparisons are performed with two public image
databases and on our experimental images.

Detection quality depends on the threshold s giving the
acceptable number of inliers (cf. Sect. 3.3). As this limit
depends on the detection scale, s is defined with the following
expression:

s = αhi (9)

with hi = width(r1) + 10(i − 1) where i represents the
detection scale and takes the index value of the current region
ri . The width of first region r1 is fixed at 20 pixels. The
value of α must ensure a high correct detection rate and a
minimum of false positive per image (FPPI) rate. Figure 14
gives the corresponding ROC curve for different values of α

and shows that α = 1.5 provides an interesting compromise
on the Stereopolis database [28]. This value gives a correct
detection rate of 81 % for a FPPI rate of 15 %.

A first comparison concerns results [16] published in
2011. The author of [16] uses the public available Stereopolis
database [28] to compute detection rates of the RPD, VBT
and STVUT methods combined with the LCG and EO pre-
processing steps. The database is constituted of 847 images
from Paris, and there are 27 triangular traffic signs. In Table 1,
the detection rates of RPD, VBT, and STVUT algorithms are
compared with the proposed method. Our method provides
a detection rate of 81 % and a FPPI rate of 15 %. Neverthe-
less, it can be interesting to note that most false positives
(FP) are generated by triangular shapes, see Fig. 20a. The
detection rate is equivalent to that obtained with STVUT, the
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Fig. 14 The ROC curve of the method proposed on the Stereopolis
database
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Table 1 Comparison of detection rates on Stereopolis database

Method Detection rate (%)

RPD (LCG) 52

VBT (LCG) 74

STVUT (LCG) 78

RPD (EO) 48

VBT (EO) 81

STVUT (EO) 81

Proposed method 81 (FPPI = 15 %)

Fig. 15 Detection results: warning and yield traffic signs
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Fig. 16 Comparison results with Gaussian noise

best algorithm presented in [16]. This methods are Hough-
like approaches using colour information, while the proposed
method presents the advantage of similar performance on
grey-scale images. The detection rate may even be improved
with the introduction of colour information.

Fig. 17 Detection with an additive noise in the images

Fig. 18 Detection with rotation distortion. a An image rotated by an
angle of +10◦ (left) and −10◦ (right). b An image rotated by an angle
of +14◦ (left) and −14◦ (right)

Secondly, the authors of [2] propose to evaluate the robust-
ness of the VBT algorithm [3] in the presence of Gaussian
noise. This evaluation has been presented in Grigorescu’s
database of traffic sign [14] which contains 48 traffic scene
images with 40 triangular signs (see Fig. 15). The experimen-
tal conditions described in [3] have been reproduced. The
VBT algorithm and the proposed method are compared by
adding different levels of Gaussian noise to images. Figure 16
shows the detection rate for σ varying from 0 to 40. The pro-
posed method provides the best detection rate, for example
for σ = 5; the proposed algorithm scores at 100 % while the
VBT algorithm at 90 % only. With σ = 15, the detection
rate stays around 90 % (see Fig. 17). Therefore, the present
approach is more robust to noise than the VBT algorithm
because the RSLD algorithm is based on RANSAC which
is robust in a noisy environment and the coded image which
helps to only select the pixels related to the diagonal sides
of a triangular shape. Without noise, VBT algorithm and our
method provide respectively 95 and 100 % of detection rate,
and 2 and 1 FP.
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Fig. 19 Examples of detection with our experimental images. Top row Warning traffic sign detection. Bottom row Yield traffic sign detection

Thirdly, robustness to rotation must be evaluated. The idea
is to reproduce rotation that can appear in images when the
car takes a tight turn. As the proposed algorithm is based
on the pixel classification according to the orientation gra-
dient, the rotation angle of the sign can decrease the correct
detection rate. Figure 18 illustrates the detection in traffic
scenes taken from the Grigorescu’s database after adding an
angular rotation. The conclusion is that the proposed method
keeps the same detection rate if the rotation remains under
10◦.

For RSLD algorithm, blurred or unfocused images should
influence the correct detection rate. Indeed, the starting point
of our method is based on images gradient with the Harris
detector, which detection rate decreases when corners disap-
pear due to blur. As VBT is based on symmetry detector, it
provides better detection rates than our method. RSLD and
VBT methods have been compared when Gaussian smooth-
ing filter is applied on Grigorescu’s database images. If stan-
dard deviation is lower than 1 pixel, both detection rates
remains close to 95 %, but for higher values, our method
presents lower performance than VBT. The performance of
VBT decreases when standard deviation is higher than 2.
For traffic sign detection, it is assumed that lens is focused
at infinity with a fixed focal distance, so it is rare to have
blurred images.

Finally, the following results have been obtained with
images of the experimental system proposed. This system
consists of an Evaluation Camera Kit (ECK1000, Cypress
Semiconductor Corporation), designed for automotive appli-
cations. The algorithm is implemented in an embedded com-
puter with the Real Time Multisensor Advanced Prototyping
Software (RTMaps) [18], coupled with the Open Computer
Vision (OpenCV) [17] library. The present method runs in

Fig. 20 Examples of false positives, a obtained on Stereopolis data-
base and b on our database

real-time at the camera video rate (30 frames per second).
Different traffic situations, have been tests in urban, rural and
highway scenes. More than 14,000 frames sizing 640 × 480
pixels, have been used for the evaluation. The road sections
contain 10 triangular warning signs and 13 yield signs. Detec-
tion is considered correct if a sign is detected in more than
three consecutive frames. The results show a detection rate
of 91 % (see Fig. 19), with a FPPI of 21 %. The false pos-
itives are principally due to objects having similar shape to
traffic signs, as shown in Fig. 20b. The undetected traffic
signs are those located on highway exits; they are far from
the vehicle and thus not clearly visible. As they are not on
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the main driving road, their non-detection does not affect the
performance of ADAS.

5 Conclusion

This paper has presented a novel approach to triangular traf-
fic sign detection. The idea is to detect the corners and the
symmetric sides of a triangle. The corners are detected using
a well-known Harris detector followed by a corner coding
process. This process identifies the up and down corners
related to the warning and yield traffic signs. The aim is to
detect the symmetric and diagonal sides of a triangle with an
original algorithm named RANSAC symmetric lines detec-
tion (RSLD). This algorithm is based on the y-coordinate
inversion and transforms a symmetric detection problem into
a simple line detection. The multi-scale approach developed
helps to locate an adapted subregion for a baseline triangle
detection.

The experiments and evaluation show that the proposed
method gives a detection rate equivalent to that of the lat-
est methods published. This method is easy to implement
in real-time. A future aim is to combine this triangular traf-
fic sign detection with an eye tracking system developed in
the MIPS laboratory [4]. For this kind of application, where
videos are available, the classification of traffic signs by
type is sufficient and will give interesting statistics for driver
evaluation.

Future studies will focus on the RSLD method. Instead
of performing a simple y-coordinate inversion, this method
could be generalised and extended to other symmetric shapes.
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