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Multi-ROI Association and Tracking With Belief
Functions: Application to Traffic Sign Recognition

Mohammed Boumediene, Jean-Philippe Lauffenburger, Jérémie Daniel, Christophe Cudel, and Abdelaziz Ouamri

Abstract—This paper presents an object tracking algorithm us-
ing belief functions applied to vision-based traffic sign recognition
systems. This algorithm tracks detected sign candidates over time
in order to reduce false positives due to data fusion formalization.
In the first stage, regions of interest (ROIs) are detected and
combined using the transferable belief model semantics. In the
second stage, the local pignistic probability algorithm generates
the associations maximizing the belief of each pairing between de-
tected ROIs and ROIs tracked by multiple Kalman filters. Finally,
the tracks are analyzed to detect false positives. Due to a feedback
loop between the multi-ROI tracker and the ROI detector, the
solution proposed reduces false positives by up to 45%, whereas
computation time remains very low.

Index Terms—Credal association, data fusion, multitarget
tracking, traffic sign recognition (TSR).

I. INTRODUCTION

A LTHOUGH traffic signs are designed to be clearly visible,
they can be missed due to driver distraction or sign mask-

ing. This can be avoided by using traffic sign recognition (TSR)
systems. Indeed, they can inform the driver of a possibly missed
traffic sign. Usually, vision-based TSR consists of a detection
and a recognition (or classification) step [1]. In each frame, the
detection localizes regions of interest (ROIs) that may contain
signs for instance based on shape detection [2] using the Hough
transform [3] or histograms of oriented gradients (HOG) [4].
The purpose of recognition is to identify the pictograms present
in the ROIs, with the help of support vector machines, K-d
trees [4], neural networks [5], etc. When detection and recog-
nition are independently processed, TSR systems show known
limitations—multiple detections for the same sign, misdetec-
tions due to temporal occlusions, and wrong detections, usually
called “false positives”—which can be reduced by adding target
tracking [6], [7]. Tracking helps to take account of temporal
redundant information of the road scene and thus allows TSR
systems to track the signs over time [3], [8]. However, although
tracking provides obviously substantial benefits, its application
to TSR is still unusual, as shown in Møgelmose et al. [1].
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One of the main tasks of target tracking concerns data
association. It defines, at time k, the relations between the set
of perceived objects (targets) and the set of already known
ones (tracks). Association methods are usually based on the
Bayesian theory. They are either track oriented, such as (G)NN1

and (J)PDAF2 [7], or target oriented, such as MHT3 [9]. Track-
oriented methods perform single-frame associations and are
mainly based on the a priori known track number. As a con-
sequence, track appearances are not directly managed but can
be possible through the computation of some specific mea-
surements (likelihood ratio, observability measurement, etc.)
for (J)PDA filters, for instance. MHT tracks objects over time
and defers the assignment decision if ambiguities occur. At
each time step, a decision tree containing all the hypotheses is
updated, and each hypothesis iteratively leads to a new decision
tree, requiring important computation time.

Recently, the use of belief functions [10], [11] and the
transferable belief model (TBM) [12] for data association has
emerged [13]–[19]. One can particularly cite [14] and [15],
in which a comparison with Bayesian tracking solutions is
presented, and [16] and [20], highlighting the fact that belief
functions constitute a suitable and intuitive framework for data
and imperfection modeling. They easily deal with the source
ignorance and conflict without any assumptions on the sensor
error models. This is the formal context of this paper.

This paper focuses on traffic sign detection and tracking.
The detection process, which has been recently presented in
[21], is based on corner and edge orientation detection in
gray-scale images. The corners help to define the candidate
positions (i.e., the ROIs) where the presence of signs is to
be confirmed, whereas the edge orientation informs about
the sign candidate type (triangular, circular, etc.). The de-
tected ROIs are then spatiotemporally tracked using a TBM-
based multi-ROI tracking (MRT) algorithm. The MRT con-
siders the ROIs provided by the detector as information to
be combined with the known tracks and thus allows their
appearance, disappearance, or evolution along time. The aim
is to reduce the influence of sensor inaccuracies and false
positives while maintaining a good detection rate. For the
associated objects, a spatial data fusion using dynamically man-
aged multiple Kalman filters (KFs) [22] both for their track-
ing and position prediction in the future frames is integrated
to enhance detection performance. This MRT provides a
global approach managing all targets and tracks whatever the

1(G)NN: (global) nearest neighbor.
2(J)PDAF: (joint) probability data association filter.
3MHT: Multihypothesis tracking.
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Fig. 1. Basic tracking-based TSR system architecture [1].

Fig. 2. Overview of the proposed system.

association type (track-to-target, track-to-track, etc.) with a
generalized combination rule allowing complexity reduction. In
addition, it provides native mechanisms for track initialization,
temporary occlusion, and conflicting association management.
The system has been implemented in a test vehicle. The results
obtained show the benefits in terms of detection rate, false pos-
itive reduction and computation time, and satisfactory real-time
constraints.

This paper is organized as follows. Section II presents the
system overview. The theoretical background of data associa-
tion in the TBM is presented in Section III. Section IV details
the proposed MRT, and its experimental validation is presented
in Section V. Finally, Section VI concludes this paper.

II. SYSTEM OVERVIEW

Tracking-based TSR systems are characterized by two
architectures: Detection–Recognition–Tracking and Detection–
Tracking–Recognition. In the first one, the temporal informa-
tion is used after Recognition (see Fig. 1), so that only the
recognized signs are tracked in the future frames. Tracking
consequently provides a memory [3], which makes the recogni-
tion of the tracked sign in subsequent frames unnecessary [23].
Several approaches have been adopted in the literature for the
second architecture, which performs Tracking after Detection.
For instance, Fang et al. [24] tracked all detected ROIs until
their respective size is sufficiently large for easy recognition,
whereas in [25], a classifier separates valid and invalid tracks
by using spatiotemporal constraints.

This study adopts a Detection–Tracking–Recognition archi-
tecture. The system proposed combines Detection and Tracking
in order to deal with temporary occlusions and false positive
detections. It is composed of an ROI detector and an MRT algo-
rithm (see Fig. 2). The ROI detection uses corner and edge ori-
entation, which helps to detect signs at the position candidates.
This results in the generation of a set of traffic sign candidates
(detected ROIs), which can contain false positives. To cope with
this problem, the algorithm tracks the detected ROIs to provide
filtered ROIs to Recognition. Tracking also feeds back to the
detector the predicted position of ROIs (tracked ROIs in Fig. 2)
in the subsequent frames. This feedback enhances the detection
performance in variable illumination conditions where corner
detection can fail. The filtered ROIs represent tracked ROIs
with a high confidence score.

This paper focuses on the association and tracking capabili-
ties of the proposed MRT. It will be shown how belief functions
provide an interesting framework for the problem description,
good association, and tracking performance while reducing the
level of false positives.

A. ROI Detection

Fig. 3 describes the ROI detector. A traffic sign shape de-
tector, which was initially described and evaluated in [21],
is implemented here. Singularities or angular edges of traffic
signs are detected by the Corner Detection step and represent
the position candidates of signs. Fig. 4 shows an example
of the position candidates, which are defined by the standard
Harris corner detector [26]. For each corner, a candidate ROI is
selected according to the shapes in the corner neighborhood.
Shape recognition is performed using a coded image, where
each pixel is defined according to edge orientations, as depicted
in Fig. 5. To recognize triangular shapes, the RANSAC sym-
metric line detection algorithm from Boumediene et al. [21]
is implemented. Its principle is extended with a Template-
Matching process to circular shape detection.

B. Multi-ROI Tracking

The MRT algorithm is composed of three functions:
Filtering, Data Association, and ROI life analysis (see Fig. 6).
Filtering performs target tracking by predicting the future posi-
tion of the tracked ROIs in the frames. Data Association assigns
one target provided by the detector to a track and manages
the track creation/deletion. ROI life analysis uses the temporal
context to validate/reject the tracks transmitted to Recognition.
Traffic sign candidates provided by Detection define the targets
of the MRT. The tracked ROIs define the tracks to be filtered
to reduce false positives. For the track State Estimation, the
well-known KF [22] has been adopted as it is one of the most
efficient methods. The filter predicts the states of the tracked
ROIs from the previous states. These predictions are trans-
mitted to the detector as a priori information to influence
future searches. Indeed, predicted positions are added to the
position candidates, which are defined by the corner detector.
In addition, the filter updates the tracked ROIs states based on
the association results.

Data Association consists of three subtasks: Gating, Asso-
ciation, and Track Maintenance. First, Gating eliminates the
improbable target-to-track pairings to reduce the computational
complexity of Association. This can be done considering, for
instance, a distance criterion between the targets and the tracks.
Association defines, at time k, the relations between targets and
tracks. Noisy environments with uncertain measurements make
joint association and tracking a challenging task, particularly in
multiple target scenarios, when their number is unknown and
temporally variable. Uncertainty also occurs when targets are
close to each other and, therefore, can fall simultaneously into
multiple gates. These conditions involve ambiguities and con-
tradictions in the association since targets could be associated
with multiple tracks, and vice versa.

The association is done through an evidential data fusion
process to consider and propagate these uncertainties as well
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Fig. 3. Block diagram of the ROI detector.

Fig. 4. Examples of detected corners related to traffic signs.

Fig. 5. Segmentation of the orientation space (from [21]). Classes 3 and 4
represent horizontal and vertical pixel edges, respectively. Classes 1 and 2
describe diagonal pixel edges. The non-edge pixel is considered as class 0.

as sensor imperfections and reduce false detections. Track
Maintenance analyzes the selected target-to-track pairs to
detect appearances and disappearances. A track appearance/
disappearance leads, respectively, to adding/deleting a KF.
However, traffic signs do not suddenly appear and disappear in
frames. Therefore, the analysis of the track temporal evolution
helps to detect false positives. Indeed, based on the track
properties such as its length (number of frames where the
track considered is present), a confidence score is defined. A
tracked ROI with a low confidence value is considered as a
false positive and thus ignored. Otherwise, it is forwarded to
the Recognition step. Disappearance is confirmed if no target is
assigned to the track several times at a stretch.

The next sections will show that credal association and
tracking is able to reduce the false positive rate while keeping a
high detection rate. This result is reproducible, whichever traffic
sign detector is used.

III. DATA ASSOCIATION IN THE TBM

A. TBM: Basic Concepts

The TBM is a subjective and nonprobabilistic interpretation
of the evidence theory [10], [11]. This framework describes a
model of uncertain reasoning and decision making based on a
credal and a pignistic level. At the credal level, belief masses
are used to represent and combine the pieces of information,
whereas at the pignistic level, these masses are transformed into
probability measurements for decision making.

1) Credal Level: Consider a problem for which all the dis-
crete solutions (also called hypotheses) Hj , j = 1, 2, . . . , k,
with k as the number of possible hypotheses, define the frame
of discernment Θ, i.e.,

Θ = {{H1}, {H2}, . . . , {Hk}} =

k⋃
j=1

{Hj}. (1)

Θ is the ignorance, i.e., the union of all hypotheses. Its cor-
responding referential subset, a power set denoted 2Θ of 2k

disjunctions of Hj , is such that

2Θ = {∅, {H1}, . . . , {Hk}, . . . , {H1, H2, H3}, . . . ,Θ} (2)

where ∅ represents the impossible hypothesis commonly in-
terpreted as the conflict between sources. A proposition A =
{H1, H2} refers to the disjunction “H1 or H2”, i.e., either {H1}
or {H2} can be the solution to the problem. Each proposition A
of 2Θ provided by a source i is characterized by its basic belief
mass (bbm) mΘ

i (A), which represents its veracity

mΘ
i : 2Θ → [0, 1],

∑
A∈2Θ

mΘ
i (A) = 1. (3)

When the k answers are exclusive and exhaustive, the solution
to the problem is one of the hypotheses of Θ, and a mass
on ∅ is not allowed. Practically, in applications such as target
tracking, this assumption is often too restrictive. Indeed, all
possible associations cannot be identified a priori since targets
can appear/disappear over time—hence the suggestion of two
other frameworks: the “open world” [12] and the “extended
open world” [19]. In the open world, Θ is exclusive but not
exhaustive, so that a mass mΘ

i (∅) > 0 is possible. In this case, ∅
represents a reject class that describes the unknown hypotheses
not taken into account during the problem formalization. The
nonexhaustivity of the discernment frame can be managed
by adding to Θ an alternative hypothesis {∗} representing
all unknown propositions not explicitly defined in Θ [19].
This singleton allows the new discernment frame Θeow to
become exhaustive [cf. (4)]. A nonzero value of mΘeow

i (∅)
is then only linked to the sources’ unreliability or to their
discordance, i.e.,

Θeow = Θ ∪ {∗}. (4)

The combination gathers the different sources bbm. In
addition to all the existing operators [20], the conjunctive
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Fig. 6. Block diagram of the MRT algorithm.

combination rule is the most straightforward [27]. For p sources
to be combined, it is expressed as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mΘ
∩ (A) =

∑
A1∩...∩Ap=A

p∏
j=1

mΘ
j (Aj),

mΘ
∩ (∅) =

∑
A1∩...∩Ap=∅

p∏
j=1

mΘ
j (Aj).

(5)

2) Pignistic Level: Finding the association relations con-
sists in making a decision among all the possible hypotheses
of the problem given. Usually, the decision is made in Θ, i.e.,
on simple hypotheses Hj . Nevertheless, after the combination
[see (5)], masses are placed either on singleton hypotheses
(|A| = 1) or on unions (|A| > 1). It appears that a transforma-
tion from 2Θ to Θ is necessary. Among all the transformations
available, the pignistic one [28] is commonly used. It is built as
a probabilistic rule and shares the mass of A on its singletons.
The pignistic probability (BetP) is given by

BetP (Hj)=
∑
A∈2Θ

Hj∈A

mΘ
∩ (A)

|A|(1 −mΘ
∩ (∅))

with mΘ
∩ (∅)<1. (6)

B. Object Association: Problem Formalization

In tracking algorithms using the TBM, the association task is
observed from two different points of view [18]: target-to-track
and track-to-target associations. This leads to the definition of
two extended open worlds Θi,. and Θ.,j ,4 i = 1, . . . , n, with
n as the number of targets, and j = 1, . . . ,m, with m as the
number of tracks at time k. The frame Θi,. contains the m
possible target(i)-to-track(j) associations denoted {Y(i,j)}, and
{Y(i,∗)} represents the appearance of target(i).5 The frame Θ.,j

is composed of the n possible track(j)-to-target(i) assignments
denoted {X(j,i)}, and {X(j,∗)} represents a track deletion, i.e.,

Θi,. =
{
{Y(i,1)}, {Y(i,2)}, . . . , {Y(i,m)}, {Y(i,∗)}

}
,

Θ.,j =
{
{X(j,1)}, {X(j,2)}, . . . , {X(j,n)}, {X(j,∗)}

}
. (7)

4The exact denotation should be Θeowi,. and Θeow.,j . For clarity reasons,
the subscript eow has been removed.

5The association of a target with the hypothesis {∗} means that no track is
assigned to the target considered.

The question that is then raised is: “Is target Xi associated
with track Yj?”. To this question, three answers are possible:
either they are associated or not, or the assignment is unclear.
Within the TBM, these solutions will be described by three
belief masses over {Y(i,j)}, over its contrary {Y(i,j)}, and over
the ignorance Θi,. so that

• m
Θi,.

j ({Y(i,j)}): belief in “Xi is associated with Yj”;

• m
Θi,.

j ({Y(i,j)}): belief in “Xi is not associated with Yj”;

• m
Θi,.

j (Θi,.): ignorance about the association.

The belief masses m
Θ.,j

i ({X(j,i)}), m
Θ.,j

i ({X(j,i)}), and

m
Θ.,j

i (Θ.,j) are generated for the track-to-target associations
in the same way. It is worth noting that no information is
initially considered on {Y(i,∗)} and {X(j,∗)}. These masses
appear during combination. This finally leads to an n×m
dimension assignment problem to be solved at each time step
in order to define the association relations. The bbm’s are then
combined with the conjunctive rule (5) over each discernment
frame Θi,. and Θ.,j , generating masses mΘi,. (and mΘ.,j ) over
2Θi,. and 2Θ.,j [19], i.e.,

mΘi,.
(
{Y(i,j)}

)
=m

Θi,.

j

(
{Y(i,j)}

) m∏
a=1
a �=j

α(i,a)

mΘi,.
(
{Y(i,j), Y(i,l)}

)
=m

Θi,.

j (Θi,.)m
Θi,.

l (Θi,.)

m∏
a=1
a �=j
a �=l

β(i,a)

and for union combinations of 2 to m− 1 hypotheses, i.e.,

mΘi,.
(
{Y(i,j), . . . , Y(i,l)}

)
= γ(i,(j,...,l))

m∏
a=1
a �=j
...
a �=l

β(i,a)

mΘi,. ({∗}) =
m∏

a=1

β(i,a)

mΘi,.

(
{Y(i,j)}

)
= m

Θi,.

j

(
{Y(i,j)}

) m∏
a=1
a �=j

m
Θi,.
a (Θi,.)
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TABLE I
TARGET-TO-TRACK PIGNISTIC PROBABILITIES

mΘi,.(Θi,.) =

m∏
a=1

m
Θi,.
a (Θi,.)

mΘi,.(∅) = 1 −

⎡
⎢⎣

m∏
a=1

α(i,a) +

m∑
a=1

m
Θi,.
a

(
{Y(i,a)}

) m∏
b=1
b �=a

δ(i,b)

⎤
⎥⎦

(8)

with

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α(i,a) =
(

1 −m
Θi,.
a

(
{Y(i,a)}

))
,

β(i,a) =
(
m

Θi,.
a

(
{Y(i,a)}

))
,

γ(i,(j,...,l)) = m
Θi,.

j (Θi,.) . . .m
Θi,.

l (Θi,.) ,

δ(i,b) =
(

1 −m
Θi,.

b

(
{Y(i,b)}

))
.

In order to make a decision, the pignistic transformation (6) is
performed over the masses from (8). This leads to two pignistic
matrices BetPi,.({Y(i,j)}) and BetP.,j({X(j,i)}), as shown in
Table I, for the target-to-track association. Each line defines the
association probabilities of Xi with Y1, . . . , Ym, ∗. The associ-
ation of a target Xi or a track Yj with ∗ defines, respectively,
the appearance/disappearance of a track. The column of the
empty set ∅ defines the conflict in the target or track associa-
tion considered. Usually, the conflict mΘi,.(∅) is redistributed
through the normalization of the pignistic probability [see (6)].
Nevertheless, as in other studies [13], [17], [29], the authors use
a nonnormalized form, i.e.,

⎧⎪⎪⎨
⎪⎪⎩

BetPi,.

(
{Y(i,j)}

) Δ
=

∑
A∈2

Θi,.

Y(i,j)∈A

mΘi,. (A)
|A|

BetPi,.(∅) Δ
= mΘi,.(∅).

(9)

Because of its informative aspect for decision making [20],
the conflict is conserved, particularly for the detection of as-
sociation ambiguities or contradictions. The formalization of
(9) to the multiobject association problem can be found in
[17]. Decision making is based on these pignistic matrices.
In the literature, several algorithms are proposed for selecting
the “best” associations regarding global decision cost functions
[13]. Generally, and it will be the case in this work, they
consider three constraints [18].

• A target can only be associated with one track, and vice
versa.

• Multiple existing tracks can disappear.
• Multiple new tracks can appear.

IV. MULTI-ROI ASSOCIATION AND FILTERING

A. Track Filtering

Tracking a moving target can be viewed as the observation
of a dynamic system. That is why the straightforward solution
employed in computer-vision tracking applications is the KF
[22]. Usually, a tracking filter is derived in terms of a recursive
(linear) estimator. It recursively computes the estimates of the
object l-dimensional state vector xj(k) ∈ R

l by a combina-
tion of the previous estimates and new object observations
zi(k) ∈ R

p. For this purpose, a dynamic (motion) model and
a measurement model are employed, i.e.,

xj(k) =Fxj(k − 1) + w(k),

zi(k) =Hxj(k) + v(k). (10)

F is the l × l state transition matrix based on the cho-
sen track motion model. It is assumed that the model and
measurement noises w and v are independent and identically
distributed random noises. The state noise w is a white Gaus-
sian l-dimensional process with zero mean and covariance Q
denoted w ∼ Nl(0, Q) and v ∼ Np(0, R). The measurement
model relates the state xj(k) to the observation zi(k) with
the measurement matrix H ∈ R

p×l. For a given frame k, the
detector provides a set Z of ROI candidates, which represents
the n targets defined by the measurements zi(k) ∈ Z . Assume
that the state evolution model linearly behaves with respect
to the track motion and that the observations zi(k) and states
xj(k) are linearly dependent, leading to (10). According to the
data association results at time k, KFs corresponding to existing
tracks are updated, and new filters are created for appearing
tracks. The number m of KFs depends on the number of
tracked ROIs.

The 2-D motion of objects in a video sequence is strongly
related to the camera motion and to their own displacement. In
TSR applications, only the camera motion has to be considered
since the objects are static. A steady-state vehicle movement is
assumed, characterized by low velocity variations with respect
to the sampling rate of the system (>15 fps). Moreover, the
angle between the line of sight of the camera and the vehicle
direction is sufficiently small, so that the sign size s in the image
can be considered as constantly increasing. In this context,
the nearly constant velocity model (12) represents a globally
satisfactory motion model and a classic choice for tracking
applications [3], [8], [30]. The state vector xj(k) of a track(j)
is such that

xj(k) = [x, y, s, vx, vy, vs]
T (11)

where [x, y] defines the position, s is the size of the tracked ROI
j in the image coordinate frame, [vx, vy] is the track(j) relative
velocities between two successive frames, and vs is the scale
change. Due to the high sampling time of the MRT, the scale
variation vs(k) and the position variations [vx(k), vy(k)] of the
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traffic signs are considered similar to the previous ones and only
due to Gaussian noises, i.e.,

⎧⎨
⎩

x(k) = x(k − 1) + vx(k),
y(k) = y(k − 1) + vy(k),
s(k) = s(k − 1) + vs(k).

(12)

with :

⎧⎨
⎩

vx(k) ∼ N (vx(k − 1) , σ2
x),

vy(k) ∼ N
(
vy(k − 1), σ2

y

)
,

vs(k) ∼ N
(
vs(k − 1), σ2

s

) . (13)

zi(k) is a p× 1 vector defined by

zi(k) = [x, y, s]T . (14)

Three processing steps are possible for a given track: cre-
ation, update, and deletion. The appearance decision (depend-
ing on BetPi,.({Y(i,∗)})) creates a new filter j. Its state vector
xj(k) is initialized by the observation zi(k) of the newly de-
tected ROIs. The initial displacement and scale change are set to
0. An association between an existing track and a target leads to
the track update. In addition, the update step helps to increment
a count cupdate(j) related to track(j), which will be used to
remove the false positives. The disappearance decision (related
to BetP.,j({X(j,∗)})) follows a non-association between the
targets and the track considered. The track predicted state x̂j(k)
is propagated into filter j with no correction (15). A track
deletion occurs following three consecutive disappearances.
x̂j(k) is fed back to Detection as a priori search positions of
the given signs in the coming images in order to reduce the ROI
search space and time, i.e.,

x̂j(k) =Fxj(k − 1)

P̂j(k) =FPj(k − 1)FT +Q. (15)

P̂j(k) defines the predicted error covariance matrix of filter j,
and Pj(k − 1) defines its error covariance matrix in frame k −
1. The false positive reduction is performed through a track-
related confidence score C(j) defined by the ratio between the
update count cupdate(j) and the length of the track, i.e.,

C(j) =
cupdate(j)

length(j)
(16)

with cupdate(j) as the number of frames where ROI j is
confirmed, and length(j) as the total frame number where
track j is present. A false positive occurs when C(j) is lower
than a predefined threshold Tconfidence; otherwise, the track j is
valid and becomes an ROI forwarded to Recognition.

B. Data Modeling in the TBM

There are several solutions to describe the bbm’s m
Θi,.

j

and m
Θ.,j

i related to {Y(i,j)} and {X(j,i)}. One model con-
siders, for instance, nonantagonistic propositions in which
m

Θi,.

j ({Y(i,j)}) and m
Θi,.

j ({Y(i,j)}) cannot simultaneously be
nonzero in order to avoid intrinsic conflict [13], [18], [20]. In

this paper, the masses defined, respectively, on Θi,. and Θ.,j

are described according to [31]
⎧⎪⎪⎨
⎪⎪⎩

m
Θi,.

j

(
{Y(i,j)}

)
= αj exp

−d2
ij ,

m
Θi,.

j

(
{Y(i,j)}

)
= αj

(
1 − exp−d2

ij

)
,

m
Θi,.

j (Θi,.) = 1 − αj

(17)

where 0 < αj < 1 represents the reliability of source
j, and dij is the dissimilarity measurement between target(i)
detected at time k and track(j) already known at time k.
dij characterizes the level of confidence that target(i)
corresponds to track(j). For the purpose of ROI tracking, dij is
chosen as the Mahalanobis distance [7] between track(j) and
target(i), i.e.,

d2ij = z̃TijS
−1z̃ij (18)

with S as the residual covariance matrix, and z̃ij as the
innovation of filter j. In (17), the choice of a monotone
decreasing function of dij leads to the belief reduction in
the association of target(i) to track(j) when the distance be-
tween the objects is large. On the contrary, if the dissimilarity
measurement is low, their association is more probable.
It can be noted that dij depends on the tracking filter covari-
ance, so that the belief depends on the prediction and tracking
performance.

C. Pignistic Association Algorithm

In [17], a review of the state-of-the-art credal association
algorithms is proposed. It shows that with a global (sub-
optimal) cost optimization, suspicious associations could be
selected. To cope with this problem, local optimization so-
lutions have been proposed. In the MRT, decision making
is based on the local pignistic probability (LPP) algorithm
(cf. Algorithm 1) [17]. This algorithm is applied to each
pignistic matrix BetPi,. (BetP.,j) and performs a successive
linewise selection of the n (or m) local maximum in the
pignistic matrix. Compared to other algorithms, the LPP has the
advantage of generating decisions directly from the pignistic
matrices with no extra calculations. A major consequence is
its ability to be used in real-time applications. Furthermore,
the LPP is less conservative than other association solutions.
A complete description and evaluation of this algorithm can be
found in [17].

Algorithm 1 Local Pignistic Probability (LPP(BetP ))

Require: Pignistic matrix BetP
Ensure: Decision vector containing the “best” associations
{Associations} ← {}
for all lines of BetP do
(imax, jmax) = argmax(i,j)(BetP (i, j))
{Associations} ← (imax, jmax)
Remove imax row and jmax column from BetP

end for
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Algorithm 2 Multi-ROIs Tracking (MRT(zi))

Require: Detected ROIs zi(k), i = 1, . . . , n
Ensure: Predicted position x̂j(k + 1), j = 1, . . . ,m of the

tracked and filtered ROIs
// 1. Basic Belief Assignment
for all measurements zi(k) do
for all predicted ROIs x̂j(k) do
d2ij ← getDistance(zi(k), x̂j(k)) (18)

Compute m
Θi,.

j and m
Θ.,j

i (17)
end for
end for
// 2. Mass combination and BetP computation
Compute mΘi,. , mΘ.,j , BetPi,., BetP.,j (8) and (9)
// 3. Target-to-track and track-to-target associations
{Y } ← LPP (BetPi,.) and {X} ← LPP (BetP.,j)
// 4. Track maintenance

AddNewTrack({Y }) and ConfirmTrackDisappearance({X})
// 5. Update the state of the tracked ROIs
UpdateKalmanFilters()
// 6. ROI evolution analysis
while j ≤ m do
if C(j) > Tconfidence then
{filteredROIs} ← xj(k)
end if
end while

An overview of the MRT algorithm is shown in
Algorithm 2. After the basic belief assignment and the
bbm’s combination (steps 1 and 2), the best target-to-track and
track-to-target associations are generated by the LPP (step 3).
Track maintenance (step 4) manages track appearance and
disappearance. The update step of the tracking filters is
performed in step 5 depending on the assignment decisions and
available observations zi(k). To deal with false positives, the
evolution of the tracked ROIs is analyzed (step 6).

V. EXPERIMENTAL RESULTS

This section presents the results obtained during real-time
experiments performed with a fully equipped test vehicle.
First, the configuration of the system and implementation de-
tails are presented; then, a quantitative analysis presents the
performance rates of the MRT. In order to give a realistic
idea of the system performance in real conditions, a video
(video_IEEE.wmv) is also provided.

A. System Configuration

The vehicle-mounted camera is a 12-bit gray-scale ECK-
100 from Sensata Technologies providing VGA images (640 ×
480 pixels, 25 fps) of the vehicle front scene. The MRT
system is written in C++ with the OpenCV 2.4 library. It
runs on an Intel core i7 2.20 GHz with 8 GB RAM under
Windows 7 (64 bits). The critical parameters of the application
are as follows: Tconfidence = 0.85 (confidence threshold of the
track evolution rate C(j)), αj = 0.9 (discounting factor of the
bbm), mmax = 10 (maximal number of KFs), (σx, σy, σs) =

TABLE II
TEST SEQUENCES ON FRENCH ROADS

Fig. 7. Detection results without MRT in successive frames. (a) and (d)
Correct sign detection. (b) and (c) Presence of false positives.

(2, 2, 3) (standard deviations of the Kalman motion model),
and the minimum size of an ROI to be detected is 20 ×
20 pixels. The performance of the MRT refers to its capacity
to reduce the false positives while maintaining a high detection
rate. Consequently, this section focuses on the detection rate
per frame (DRPF), the false positive per frame (FPPF), and the
detection rate per sign (DRPS) for system evaluation. A system
output is defined as a true positive (TP) if it can be matched
with the ground truth and as a false positive (FP) if otherwise.
A tracked target is correct if a sign candidate is forwarded to the
recognition step more than N = 3 successive times. The DRPF,
DRPS, and FPPF are defined as

DRPF =
Number of true positives

Ground Truth
· 100

DRPS =
Number of correct detections

Total Sign Number
· 100

FPPF =
Number of false positives

Total Frame Number
. (19)

B. Quantitative Results

The MRT performance is evaluated with respect to the
ground truth of the two video sequences described in Table II.
These sequences have been annotated empirically so that,
in each frame, the positions of signs having between 20 ×
20 pixels and 60 × 60 pixels are defined. The first sequence
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Fig. 8. Impact of the candidate position prediction feedback in four successive frames. (Top) Without feedback. (Bottom) With feedback.

TABLE III
COMPARISON BETWEEN MRT AND STATE-OF-THE-ART DETECTION–TRACKING–RECOGNITION ALGORITHMS

TABLE IV
PROPERTIES OF SELECTED DETECTION–TRACKING–RECOGNITION ALGORITHMS

(12 500 frames) mainly concerns departmental roads and mo-
torways with several lane changes and thus presents large
vehicle speed variations. Forty-two traffic signs appear in
1452 frames. The second video (6250 frames) contains even
more various scenarios since all French road types are repre-
sented with a larger ratio of speeds under 90 km/h. This variety
is confirmed by the high ratio of signs with respect to its length.
These signs are present in 1031 frames.

Fig. 7 gives a qualitative view of detection results without
MRT on consecutive frames. In frames (b) and (c), two false
positives can be observed. As they occur suddenly and do
not remain visible over time, these are typical examples of
wrong detections that can be removed by the MRT. Fig. 8
(top) shows a short sequence of circular sign detection with
no feedback between Tracking and Detection. In frame (a), the
sign is correctly detected. However, in frames (b) and (c), the
corner detection fails and thus misses the circular sign twice.
This drawback is solved by the prediction task of the MRT and
the feedback of the tracked ROIs (see Fig. 8, bottom), providing
the detector with potential search positions.

A comparison of the proposed MRT with Detection–
Tracking–Recognition approaches from [32]–[34] and evalu-
ated in [1] is proposed in Table III. Some properties of these
systems are given in Table IV as they are presented in [1].
One may note that a direct metric comparison is inappropriate
since each method is evaluated considering specific data sets

and sometimes different metrics. For instance, in [33] and [34],
two measurements are used to evaluate the FP: the positive
predictive value (PPV = TP/(TP + FP)) and the false posi-
tive rate (FPR = FP/N , where N is the number of negative
examples in the data set). Unlike the FPPF, the PPV is in-
fluenced by the number of frames where signs are present.
Consequently, it is difficult to compare the proposed method
with [34] as the authors do not give any information about
the 34 sequences used. Moreover, the FPR is rarely used as
the negative number does not make sense [1]. Considering
these limitations, the proposed solution presents interesting
performance with a low FPPF (0.16) and a high DRPF (89.92).
The mean DRPF and mean false positives (more accurate since
they show the results for different sign types) already highlight
the good results of the MRT.

Table V shows that the circular and triangular sign detector
alone (denoted MRT ) provides, respectively, 87% and 91%
of DRPS for Video 1 with 0.28 and 0.26 of FPPF. Slightly
better results are obtained in Video 2. In addition, it is clearly
visible that the MRT reduces the false positives by more than
45% while keeping substantially similar levels of DRPF and
DRPS. This lowers the amount of useless data provided to the
recognition step and thus reduces the global TSR computational
time. Fig. 9 presents more details about the MRT influence
on the detection step. These receiver operating characteristic
(ROC) curves are created by plotting the DRPF with respect
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TABLE V
PERFORMANCE RATES FOR VIDEO 1 AND 2

to the FPPF, considering various system configurations with
and without the MRT. For the circular sign detection, the ROC
curves clearly show the improvement induced by the MRT
algorithm since equivalent DRPFs are obtained with lower
FPPF values [see Fig. 9(a)], particularly when the DRPF is
high (> 80%). For the triangular sign detection, the reduction
of FPPF is also large (about 40%) but with a lower DRPF (71%)
than for circular signs (87%), as shown in Fig. 9(b). In this
second case, the test highlights the sensitivity of the triangular
detector to the minimum ROI size. Improved results can be
obtained by considering ROIs larger than 30 square pixels.

Table VI shows the average computation time per frame in
milliseconds, without code optimization, for the detector and
the MRT in both sequences. The detection of triangular and
circular signs requires an average of 40 ms to process a single
frame. The MRT computation time depends on the number of
detected n and tracked m ROIs but remains insignificant (less
than 2 ms in the worst case). With n = m = 4, the computation
time of the MRT is close to 0.70 ms, representing less than
2% of the computation time of the detection. Therefore, the
proposed MRT provides good performance by reducing false
positives while run time remains low.

VI. CONCLUSION

A multi-ROI association and tracking algorithm based on
spatiotemporal data fusion for vision-based TSR has been
presented. The idea is to reduce false positive detections by
tracking sign candidates over time and processing the associ-
ation task with the TBM. First, a detector extracts a set of ROI
candidates, which represents data to be combined in the fusion
process. Then, the correlation task provides the associations
with respect to the maximum of belief of each target-to-track
and track-to-target pairing. Tracking is performed using mul-
tiple KFs. Finally, the generated tracks are analyzed to detect
false positives. The algorithm provides a set of ROIs, and on
the other hand, it feeds the predicted sign locations back into the
detector as a priori knowledge to influence Detection in subse-
quent frames. The experimental results show the effectiveness
of this strategy in the reduction of the false positives by up to
45% with real-time performance. It can be noted that the multi-
ROI tracker does not only apply to the ROI detector used in this
paper. It can be applied to any traffic sign detector to reduce
false positives.

This paper has focused on tracking traffic signs leading to a
limited number of ROIs in frames. One extension of this study

Fig. 9. ROC curves without and with MRT for (a) circular and (b) triangular
signs.

TABLE VI
AVERAGE COMPUTATION TIMES

will be to consider more dynamic situations in a dense traffic
environment, such as pedestrian and dynamic object tracking.
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