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The aim of this work is twofold: First, we extend the multisymplectic geometry already
done for field theories to the relativistic mechanics by introducing an appropriate con-
figuration bundle. In particular, we developed the model to obtain the Hamilton–De
Donder–Weyl equations to the movement of a relativistic charged particle immerged
in an electromagnetic field. Second, we have found a direct relationship between the
multisymplectic geometry and the k-cosymplectic structure of a physical system.
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1. Introduction

In recent years much work has been done with the aim of establishing the suitable
geometrical models for making a covariant description for both models: the field
theories and the relativistic mechanics.

There are different kinds of geometrical models. We have the so-called k-
symplectic formalism which uses the k-symplectic forms introduced by Awane [1–3],
and which coincides with the polysymplectic formalism described by Günther [4].
From this geometrical model many of the characteristics of the autonomous Hamil-
tonian systems arise from the existence of a natural geometric structure with which
the phase space of the systems is endowed by the symplectic form (a closed and
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one-nondegenerate two-form). A natural extension of this is the k-cosymplectic for-
malism which is the generalization to field theories of the cosymplectic (k = 1)
description of non-autonomous mechanical systems [5, 6]. On linear frame bundle,
soldering forms are also polysymplectic forms where their study and applications
to field theories constitute the k-symplectic geometry developed by Norris [7–9].

Among the different geometrical models cited above for describing field the-
ories, there are multisymplectic models [10–13], first introduced by Kijowski and
Tulczyjew [14–16].

On this model, the multisymplectic manifold is endowed with a closed and
one-nondegenerate k-form. In this study, we are interested on the Lagrangian and
Hamiltonian formalisms.

The jet bundles J1π are the appropriate domain for the construction of the
Lagrangian formalism [17–22]. In particular, this formalism is constructed for
(hyper)-regular and singular field theories Roman-Roy [23].

The Hamiltonian description presents different kinds of problems because the
choice of the multimomentum bundle for developing the theory is not unique [24]
and different kinds of Hamiltonian systems can be defined depending on this choice
and on the way of introducing the physical content the “Hamiltonian” [25–30]. To
overcome this difficulty [25], all kinds of multimomentum bundle are subbundle
of a larger one which is the extended multimomentum bundle. In the Hamilto-
nian formalism, the standard way of defining Hamiltonian systems is based on
using Hamiltonian sections [31] and which are the Hamiltonian counterparts of
Lagrangian systems. The construction of these Hamiltonian systems is carried out
by using the Legendre map associated with the Lagrangian system. This problem
is particularly studied for the (hyper)-regular case [22, 32] which is developed in
the restricted multimomentum bundle and for the singular (almost-regular) case
[21, 33, 34] is not defined everywhere in the restricted or the extended multimomen-
tum bundles, but it is developed in certain submanifolds in one or the other of
them. These constructions are reviewed in [23].

In the geometric description of field theories, the most interesting subject con-
cerns the field equations. In the multisymplectic models, both in the Lagrangian
and Hamiltonian formalisms, these equations can be derived from a suitable vari-
ation principle: the so-called Hamilton principle in the Lagrangian formalism and
Hamilton–Jacobi principle in the Hamiltonian formalism [17, 19, 24, 25]. Particu-
larly, for the hyper-regular theories, the variation principle leads to Hamilton–De
Donder–Weyl (HDW) equations by using special kinds of integrable multivector
fields (holonome multivector fields) [23, 25], which make these equations in a suit-
able geometric formulation [35].

The purpose of this paper is to extend the multisymplectic geometry already
done for the field theories to the relativistic mechanics. Using this extension, we can
define new kinds of holonome multivector fields which verify the Hamilton principle.
In particular, in Hamiltonian formalism, we obtained the HDW equations describing
the movement in mechanics.
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The paper is organized as follows: First, we summarize the multisymplec-
tic geometry field theories, in particular in our work, we pointed out that the
hyper-regular field theories can be developed on a configuration whose base is iden-
tified with the flat space: Minkowski space. All these aspects are discussed in Sec. 2.
Then, we develop our model of multisymplectic geometry for relativistic mechan-
ics in Sec. 3. Section 4 is devoted to retrieve a relationship between the symplectic
two-form ωL of the k-structure (k-symplectic and k-cosymplectic) and the Poincaré–
Cartan form ΩL of the multisymplectic geometry. Finally, in Sec. 5, we develop the
multisymplectic model given above in Secs. 2 and 3 separately to study the dynamic
of a free electromagnetic field and the movement of a charged particle immerged in
an electromagnetic field Aµ respectively.

2. Multisymplectic Geometry for Classical Field Theories

2.1. Lagrangian formalism

The field theories are the classical limit of quantum fields’ theories. Those are
the fields, such as gauge fields of Yang–Mills, which interact with matter fields.
A geometric description has already been done [36] in building a principal fiber
bundle G × S0,2 where G ≡ Lie group associated in this case to the quantum
fields of Yang–Mills. This fiber is above a database the flat space: Minkowski space
(k = 4) which coincides with the form of the Lagrangian of fields that we studied
(i.e. Lagrangian which is only explicit on fields not on the database coordinates
(xµ)µ=0,3). The classical limit of these Lagrangians corresponds to the study of fields
without constraints (this coincides with the abstraction of ghosts which corresponds
to the S0,2 group). The favorable principal fiber of configuration is E = G(G ≡ N)
and the structure in this case is four-symplectic (i.e. L0 ∈ (T 1

4N)). How to use the
multisymplectic geometry of such theories? This problem is solved in Sec. 4.

In this section, we are going to summarize the multisymplectic geometry given
for studying the dynamic of field theories [23, 25]. In particular, we are going to con-
centrate ourselves on dynamic of most general case of field theories: theories whose
Lagrangians are explicit on database coordinates (xµ)µ=0,3 = (x0 = ct, (xi)i=1,3)
and are hyper-regular. So, we follow the following steps.

Let π : E →M be a fiber bundle with M the base space, that we choose, is a flat
manifold i.e. the Minkowski space with global coordinates {xµ}. π is the pull-back
of a section φ : M → E

xµ → (xµ, yA = φA(xρ)); µ = 0, . . . ; A = 1, . . . , d,

where {yA} ≡ physical fields. These fields {yA} are presented by a fiber above each
(xµ) of the base space M . The set of fibers is denoted by the space N so the fiber
bundle E will be

E = R4 ×N. (1)
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Let π1 : J1π → E be the first-order jet bundle of π. By using (1),

J1π = R4 × T 1
4N, (2)

where T 1
4N is the Whitney sum of four-copies of the tangent space TN at the

space N with local coordinates (yA, vA
v ), dim T 1

4N = 5d. π1 is the pullback of a
section which is a mapping ψ : E → J1π. If ψ is a global section of π1 such that
π1 ◦ ψ = IdE , ψ is called a jet field. In this case φ is an integral section of ψ and
ψ ◦ φ = j1φ (where j1φ : M → J1π denotes the canonical lifting of φ) and ψ is the
integral jet field.

If (xv) is a natural local system on M, (xv, y
A, vA

v ) is the induced local coordi-
nates system on J1π where

j1φ(xv) = (xv, y
A, vA

v ) = (xv, φ
A(xρ), ∂vφ

A(xρ)), (3)

with

∂vφ
A =

∂φA

∂xv
= vA

v ≡ velocity of field.

Let π1 ≡ π ◦ π1: J1π →M , where π1 is the pullback of the section J1φ.
A Lagrangian density is usually written as L = L(π1∗η) where L ∈ C∞(J1π) is

the Lagrangian function and η is the volume form on M(η ∈ Ω4(M)) with

η = dxk = dx0 ∧ dx1 ∧ dx2 ∧ dx3, k = 4.

By using the natural system of coordinates defined on J1π, the expression of the
Lagrangian density is:

L = L(xµ, yA, vA
µ )dx0 ∧ dx1 ∧ dx2 ∧ dx3. (4)

And the expressions of θL and ΩL the Poincaré–Cartan four- and five-forms are
respectively [23]:

θL =
∂L

∂vA
v

dyA ∧ dk−1xv −
(
∂L

∂vA
v

vA
v − L

)
dkx and ΩL = −dθL ∈ Ω5(J1π),

(5)

where dk−1xα ≡ i( ∂
∂xα )dkx.

Let Γ(M,E) be the set of sections {φ} cited above and (J1π,ΩL) be the
Lagrangian system. The Lagrangian field equations can be derived from a vari-
ational principle called the Hamilton principle associated to the Lagrangian for-
malism which is given by:

i(XL)ΩL = 0, (6)
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where {XL} ⊂ χ4
L(J1π) is a class of holonomic multivector fields associated to

j1φ (XL is π1-transverse, integrable and SOPDE). The local expression of XL is
given by:

XL =
∂

∂xv
+ FA

v

∂

∂yA
+GA

vρ

∂

∂vA
ρ

, (7)

where FA
v = vA

v and GA
vρ = ∂2yA

∂xv∂xρ .
By substituting (7) and (5) in (6), the Euler–Lagrange equations for the fields

satisfy: (
∂L

∂yA
− ∂

∂xv

(
∂L

∂vA
v

))
◦ j1φ = 0 ∀A = 1, d. (8)

In this case ∂2L
∂vA

µ ∂vB
v

�= 0, ∀ (y) ∈ J1π, the Lagrangian is hyper-regular (reg-
ular globally), so we can associate a Hamiltonian formalism equivalent to the
Lagrangian one.

2.2. Hamiltonian formalism

At this (J1π,ΩL) the associated extended Hamiltonian system is (Mπ,Ω) where
Mπ is a subbundle of the multicotangent bundle of E (i.e. Mπ ⊂ ∧4

T ∗E the total
exterior algebra bundle) Mπ ≡ ∧4

2 T
∗E, dimMπ = d+ 4 + 4d+ 1 = 5d+ 5 [25].

Let θ and Ω, the multimomentum Liouville four- and five-forms defined on Mπ.
If the local coordinates (xv, yA, pv

A, p) in Mπ, the local expressions of these forms
are:

θ = pv
Ady

A ∧ dk−1xv − pdkx,

Ω = −dθ = −dpv
A ∧ dyA ∧ dk−1xv + dp ∧ dkx.

(9)

Let F̃L be the extended Legendre map F̃L : J1π →Mπ. In natural coordinates:

F̃L∗xv = xv, F̃L∗yA = yA, F̃L∗pA
v =

∂L

∂vA
v

,

F̃L∗p = vA
v

∂L

∂vA
v

− L, F̃L∗θ = θL and F̃L∗Ω = ΩL.

(10)

Because (J1π,ΩL) is hyper-regular, it is equivalent to a Hamiltonian system
(J1π∗,Ωh) by a global diffeomorphism FL called the restricted Legendre map
associated at L. Let J1π∗ be the restricted multimomentum bundle associated
at π : E → M , so, J1π∗ = R4 × (T 1

4 )∗N where (T 1
4 )∗N is the Whitney
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sum of four-copies of the cotangent space T ∗N at N spawned by (yA, pA
v ) and

dimJ1π∗ = 5d+ 4(dim (T 1
4 )∗N = 5d).

Let the natural submersion µ : Mπ → J1π∗ and FL := µ ◦ F̃L : J1π → J1π∗.
The coordinates of both bundles are related by:

FL∗xv = xv, FL∗yA = yA, FL∗pA
v =

∂L

∂vA
v

, (11)

where (xv, y
A, pA

v ) is a natural coordinate system defined on J1π∗.
To the projection µ, we associate a section h : J1π∗ → Mπ. It is called a

Hamiltonian section which carries the physical information of the system. We can
do the following remark that, in the case of free fields, the Hamiltonian section
is specified by a Hamiltonian function h ∈ C∞(J1π∗) (i.e. h is defined globally
on J1π∗), thus the map h = µ−1 := FL̃ ◦ FL−1. Locally, the Hamiltonian section
h(xv, yA, pv

A) = (xv, yA, pv
A, p = −h(xρ, yB, pρ

B)) is specified by the Hamiltonian
function

h = (FL−1)∗L− pv
A(FL−1)∗vA

v . (12)

On J1π∗, the local expressions of the Hamilton–Cartan four- and five-forms are
defined by:

θh = pv
Ady

A ∧ dk−1xv + hdkx, (13)

Ωh = −dθh = −dpv
A ∧ dyA ∧ dk−1xv − dh ∧ dkx.

By substituting (11) in (13), we obtain (5):

FL∗θh = θL, FL∗Ωh = ΩL.

In order to obtain the Hamiltonian fields’ equations equivalent to those obtained
by the Lagrangian formalism (8), we use the Hamilton–Jacobi principal:

i(Xh)Ωh = 0, (14)

where Xh is the HDW multivector field (i.e. HDW multivector field is a class of
integrable and τ -transverse the multivector fields {Xh} ⊂ χ4(J1π∗)):

Xh =
∂

∂xv
+ FA

v

∂

∂yA
+Gρ

Aν

∂

∂pρ
A

(15)

with

FA
v =

∂h

∂pv
A

, Gv
Aν = − ∂h

∂yA

and τ : J1π∗ →M pullback of an integral section Ψ associated at φ such that:

FL ◦ J1φ := Ψ : M → J1π∗. (16)
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Finally, in a natural system of coordinates (xv, yA, pv
A) in J1π∗, Ψ satisfies the

following system of equations:

∂(yA ◦ Ψ)
∂xv

=
∂h

∂pv
A

◦ Ψ ≡ ∂h

∂pv
A

∣∣∣∣
Ψ

,

∂(pv
A ◦ Ψ)
∂xv

= − ∂h

∂yA
◦ Ψ ≡ ∂h

∂yA

∣∣∣∣
Ψ

.

(17)

These equations are known as the HDW equations of the restricted Hamiltonian
system.

We define the vector Z ≡ (yA, pµ
A)T and ∇Z ≡ (∂yA , ∂pµ

A
) for A = 1, d and

µ = 0, 3 where both the components {yA} and {pµ
A} are unconstrained in J1π∗.

Having regards to the choice of the configuration bundle E and the Lagrangian of
fields, if we explicit the Hamiltonian equation fields (17), we obtain:


∂h

∂yA

∂h

∂p0
A

∂h

∂p1
A

∂h

∂p2
A

∂h

∂p3
A




=




0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




︸ ︷︷ ︸
J0

∂0




yA

p0
A

p1
A

p2
A

p3
A




+




0 0 −1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0




︸ ︷︷ ︸
J1

∂1




yA

p0
A

p1
A

p2
A

p3
A




+




0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0




︸ ︷︷ ︸
J2

∂2




yA

p0
A

p1
A

p2
A

p3
A




+




0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0




︸ ︷︷ ︸
J3

∂3




yA

p0
A

p1
A

p2
A

p3
A



.

(18)

The system (18) can be contracted naturally [35] in:

(Jµ∂µ)︸ ︷︷ ︸
J∂

Z = ∇Zh. (19)

Equation (19) is the contracted form of the HDW equations for fields whose com-
ponents are independents (i.e. unconstrained).

The explicit matrices {Jµ}µ=0,3 [37] associated to the operator J∂ are obtained
naturally, where Jµ are 5 × 5 skew-symmetric constant matrix for “A” fixed. The
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partial differential ∂µ appearing in J∂ is associated to the coordinates (xµ) of the
flat space: Minkowski space. The system (19) can also be written as:

∇Zh = −i(iJµ∂µ)︸ ︷︷ ︸
X

Z = (e−iX − 1)Z. (20)

3. Multisymplectic Geometry for the Relativistic Mechanics

3.1. Lagrangian formalism

By analogy with the work already done for the field theories, we extend the idea to
the relativistic mechanics.

Let π : E = R×N → R, where E is the configuration bundle, R as a base space
spawned by (ct) as global coordinate and N = R3 is the fiber above each point of
the database (dimN = 3 and dimE = 4). Let (qµ)µ=0,3 = (q0 = ct, (qi)i=1,3) be
a natural coordinate defined in E. If the configuration bundle E can be equipped
with a metric ηµν = (1,−1,−1,−1) such that qµ = ηµνqv, in this case E coincides
with the Minkowski space. We note that “c” is speed of light and (qi)i=1,3 are the
generalized coordinates. π1 : J1π → E is the first-order jet bundle of π. In this
case, the section j1φ : R → J1π := R× TN and where dimJ1π = 7.

The natural coordinates defined on J1π as done in (3) is (q0, qi, q̇i) and the
global integral section j1φ such that:

j1φ(q0)=
(
q0, φi(q0) = φi(t) = qi(t),

∂φi

∂q0
(q0) =

∂φi

c∂t
(t) =

dqi

cdt
(t) =

q̇i(t)
c

= q̇
i
(t)

)
.

(21)

We define the Lagrange function L : R×TN → R. We define on J1π, the Poincaré–
Cartan one-form θL and two-form ΩL associated at L as in (5) by:

θL =
∂L

∂q̇ i
dqi − 1

c

(
∂L

∂q̇i
q̇i − L

)
dq0,

ΩL = −dθL.

(22)

We put

dqi

cdt
(t) = q̇

i
(t) and

d2qi

cdt2
(t) =

q̈ i(t)
c

= q̈
i
(t),

where q̇ i(t) and q̈ i(t) are the velocity and the acceleration of the mechanical system
respectively. For the relativistic mechanics, at the Hamilton principal (6), we can
associate the following holonomic multivector field, (7) becomes:

XL =
∂

∂q0
+ q̇

i ∂

∂qi
+ q̈

i ∂

∂q̇ i
. (23)

1350001-8
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We can do the following remark that

XL =
1
c

(
∂

∂t
+ q̇ i ∂

∂qi
+ q̈ i ∂

∂q̇ i

)
=

1
c
XL.

For this dynamic, the first-order jet bundle J1π is generated by the HDW multi-
vector fieldXL (i.e. HDW multivector field is a class of integrable) and τ -transverse
multivector fields {XL} ⊂ χ1(J1π). The Lagrangian is hyper-regular, so (J1π,ΩL)
is equivalent to a Hamiltonian system (J1π∗,Ωh).

3.2. Hamiltonian formalism

Let Mπ =
∧1

2 T
∗E ≡ R × R × T ∗N be the extended multimomentum bun-

dle, dimMπ = 8. The multimomentum Liouville forms, in a natural coordinates
(q0, qi, pi, p) defined in Mπ are:

θ = pidq
i − pdq0,

Ω = −dθ = −dpi ∧ dqi + dp ∧ dq0.
(24)

The first-order jet bundle associated at E is J1π∗ := R×T ∗N at which we associate
the following forms defined in natural coordinate (q0, qi, pi):

θh = pidq
i + p0dq

0,

Ωh = −dpi ∧ dqi − dp0 ∧ dq0.
(25)

By analogy with (10) and (12) the Hamiltonian function for the mechanic is gen-
erally the following non-autonomous Hamiltonian:

h(t, qi(t), pi(t)) = (FL−1)∗L− pi(FL−1)∗q̇ i, (26)

where

FL∗t = t, FL∗qi = qi, FL∗pi =
∂L

∂q̇ i
. (27)

From (22), (25) and (26), we find naturally

p0 =
h

c
. (28)

In Eq. (22), we identify the terms

∂L

∂q̇ i
dqi = ΘL

FL−−→ pidq
i = ΘLiouville one-form

−d ↓ −d ↓
ωL = −d

(
∂L

∂q̇ i

)
∧ dqi FL−−→ ω = dqi ∧ dpi = ωcanonical symplectic two-form.

(29)

1350001-9
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By substituting (27) in (25), we obtain (22):

FL∗θh = θL and FL∗Ωh = ΩL.

The corresponding multivector field equivalent to (23) which satisfies the Hamilton–
Jacobi principal (14) is:

Xh =
∂

∂q0
+ q̇

i ∂

∂qi
+ ṗ

i ∂

∂pi
. (30)

The HDW equations obtained can be identified by the ODE equations for the curves
in relativistic mechanics:

dqi ◦ Ψ
dq0

= q̇
i
=
∂p0

∂pi

∣∣∣∣
Ψ

,

dpi ◦ Ψ
dq0

= ṗi = −∂p0

∂qi

∣∣∣∣
Ψ

.

(31)

We put Z ≡ (qi, pi),∇Z ≡ (∂qi , ∂pi); i = 1, 3, the system ODE of the HDW can be
written by:


∂p0

∂qi

∂p0

∂pi


 =

(
0 −1
1 0

)
︸ ︷︷ ︸

Jt

(
∂0q

i = q̇
i

∂0pi = ṗi

)
for i fixed and ∂0 =

∂

∂q0
. (32)

The system (31) can be contracted naturally in:

∇Zhz = J0∂0︸︷︷︸
J∂

Z = J0Ż. (33)

If we explicit the index i = 1, 3 the system ODE (32) becomes:


∂p0

∂q1

∂p0

∂p1

∂p0

∂q2

∂p0

∂p2

∂p0

∂q3

∂p0

∂p3




=




0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0




︸ ︷︷ ︸
J0




q̇1

ṗ1

q̇2

ṗ2

q̇3

ṗ3



, (34)

where J0 is 6 × 6 skew-symmetric constant matrix and J∂ depends only on the
partial differential ∂0 associated to the base space coordinates (q0).
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4. Relation between Multisymplectic Geometry and the
k-Structure

4.1. The multisymplectic geometry and k-cosymplectic structure

We are going to concentrate ourselves on fields’ theory; the result is the same
for the mechanic theory, so: let the fiber bundle cited above be E = R4 × N .
On the associated first-jet bundle j1π = R4 × T 1

4N , we have the local coordinate
(xµ, y

A, vA
µ );µ = 0, 3, A = 1, d. Let the Lagrangian function L ∈ C∞(J1π) (i.e.

L(xv, y
A, vA

v )) and χ4
L(J1π = R4×T 1

4N) be the set of the holonomic k-vector fields
on J1π (see [9]), such that:

Xv =
∂

∂xv
+ FA

v

∂

∂yA
+GA

vρ

∂

∂vA
ρ

, (35)

where FA
v = vA

v and GA
vρ = ∂2yA

∂xv∂xρ . These multivector fields, in four-cosymplectic
Lagrangian formalism, are solutions for the following equation:

iXvω
v
L = −dEL +

∂L

∂xv
dxv , (36)

where

ωv
L = −d

(
∂L

∂vA
v

dyA

)
, (37)

Θv
L =

∂L

∂vA
v

dyA,
(38)

EL = −vA
v

∂L

∂vA
v

+ L.

By putting (37) and (38) in (36), we obtain:

iXv

[
−d

(
∂L

∂vA
v

dyA

)]
= d

(
vA

v

∂L

∂vA
v

− L

)
+
∂L

∂xv
dxv. (39)

Because the base space is flat, we can use the following relations:

d[α ∧ β] = dα ∧ β + (−1)rα ∧ dβ,
iX(α ∧ β) = iXα ∧ β + (−1)rα ∧ iXβ, (40)

r = d◦α = degrees of α.

And “d ” the total differential is defined on J1π by:

d =
∂

∂xv
dxv +

∂

∂yA
dyA +

∂

∂vA
v

dvA
v . (41)
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By multiplying (39) by the volume element η = dxk = dx0 ∧ dx1 ∧ dx2 ∧ dx3, we
obtain: {

−iXvdΘv
L − d

(
vA

v

∂L

∂vA
v

− L

)
− ∂L

∂xv
dxv

}
∧ dkx = 0. (42)

By using (40), the following term gives:

−iXvdΘv
L ∧ dxk = −iXv(dΘv

L ∧ dxk) + (−1)2dΘv
L ∧ iXvdxk

= −iXv [d(Θv
L ∧ dxk) − (−1)1Θv

L ∧ d(dxk)]

+ d(Θv
L ∧ iXvdxk) − (−1)1Θv

L ∧ d(iXvdxk). (43)

By contracting (35) by η, we have:

iXvdxk = dxk−1
v . (44)

Finally (43) gives:

−iXvdΘ
v
L ∧ dxk = −iXvd(Θ

v
L ∧ dxk) + d(Θv

L ∧ dxk−1
v ). (45)

The term

∂L

∂xv
dxv ∧ dxk = 0 ∀ ν = 0, 3. (46)

Inserting (45) and (46) in (42), we obtain:

d

[
Θv

L ∧ dxk−1
v −

(
vA

v

∂L

∂vA
v

− L

)
∧ dxk

]
= iXvd(Θv

L ∧ dxk). (47)

We identify the term in (47)

Θv
L ∧ dxk−1

v −
(
vA

v

∂L

∂vA
v

− L

)
∧ dxk = θmultisymplectic, (48)

ΩL multisymplectic = −dθL multisymplectic = −iXvd(Θv
L ∧ dxk). (49)

4.2. The multisymplectic geometry and k-symplectic structure

By analogy with the work done for the k-cosymplectic structure, but in this case
E = N , the Lagrangian function L ∈ C∞(T 1

4N) and χ4
L(T 1

4N) be the set of k-vector
fields in T 1

4N (see [9]), such that:

Xv = FA
v

∂

∂yA
+GA

vρ

∂

∂vA
ρ

,

FA
v = vA

v , GA
vρ =

∂2yA

∂xv∂xρ
.

(50)
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The relation (36) becomes:

iXvω
v
L = −dEL, (51)

where the term ∂L
∂xv = 0, ∀ v = 0, 3 and the expressions (37) and (38) of ωv

L

and EL,Θv
L respectively seen in four-cosymplectic differ for four-symplectic in the

expression of the Lagrangian (i.e. L does not depend on xv) and “d ” the total
differential, in this case, is given by:

d =
∂

∂yA
dyA +

∂

∂vA
v

dvA
v . (52)

Given the expression of k-vector field Xv, we have iXvdxk = 0. The same calculus
can be done for k-symplectic as it was done for four-cosymplectic, but in this case
the term (Θv

L ∧ dxk−1
v ) disappears automatically from (48) which it becomes

−
(
vA

v

∂L

∂vA
v

− L

)
∧ dxk �= θmultisymplectic. (53)

We can make the following remark that the contribution of the term ∂L
∂xv vanishes

in both cases if it is k-symplectic or k-cosymplectic. So, to study the dynamic of
a k-symplectic physical system, we can recalculate demonstration for the relation-
ship between k-symplectic and multisymplectic treating the dynamic in the first-jet
bundle j1π = Rk × T 1

kN as if it was k-cosymplectic with ∂L
∂xv = 0.

In conclusion, we deduce that the multisymplectic geometry is k-cosymplectic
structure such that the fibers of the first-jet bundle J1π for the Lagrangian formal-
ism are constructed based on the two-symplectic form ωv

L = −d( ∂L
∂vA

v
dyA) defined on

each point of the fiber. So, ωv
L forms the structure of the multisymplectic geometry.

We remark also that, in physics, if the theory is explicit so the Lagrangian
depends on the local coordinates (xv , y

A = φA(xv), vA
v = ∂vφ

A(xv)) (i.e. L(xv,

yA, vA
v ) and ∂L

∂xv �= 0), the structure of the geometry is k-cosymplectic and the
dynamic of fields is studied on a first-jet bundle J1π = R4 × T 1

4N . But if the
Lagrangian depends only on the following coordinates (yA, vA

v ) and ∂L
∂xv = 0, ∀ v =

0, 3, the theory is said to be implicit and the structure is k-symplectic and can be
also constructed on the fiber bundle J1π = R4 × T 1

4N above the database R4:

FL : R4 × T 1
4N → R4 × (T 1

4 )∗N.

By using the Legendre map

(xv, y
A, vA

v ) →
(
xv, y

A, pA
v =

∂L

∂vA
v

)
, (54)

without any demonstration, we can use the same method done for the Lagrangian
formalism and by using FL; the same results will be deduced for the Hamiltonian
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formalism. In this case, the k-cosymplectic structure of the geometry is based on
the symplectic two-form

ωv = dyA ∧ dpA
v = FL ωv

L.

We can use the same method of demonstration and without doing any calculus
using the fiber bundle cited above in Sec. 3 for the relativistic mechanic, we will
find a result similar to Eq. (49) just by making the following change of variables:

(xv, y
A, vA

v ) and k = 4 → (ct, qi, q̇ i) and k = 1. (55)

We can construct the multisymplectic geometry for the relativistic mechanics based
onto the canonical symplectic two-form (29), Eq. (36) becomes in this case:

iXωL = −dEL +
∂L

∂t
dt. (56)

Unless, in this case, we can make the following remark that the relativistic mechanic
is implicit (i.e. ∂L

∂t = 0 and L(qi, q̇ i)), the theory is said to be autonomous. If the
theory of relativistic mechanics is explicit (i.e. ∂L

∂t �= 0 and L(t, qi, q̇ i)), it is called
non-autonomous.

5. Dynamic of Physical Systems

By using the multisymplectic geometry studied in sections cited above, and having
regard to the relationship between the k-cosymplectic (k-symplectic respectively)
and multisymplectic geometry in Sec. 4. Here, we are going to develop the model
for studying separately the dynamic of a relativistic charged particle immerged in
a weak field: the electromagnetic field Aµ ≡ (φ,Ai) and in the absence of the grav-
itational field (a strong field), then the dynamic of a classical free electromagnetic
field.

5.1. Dynamic of a relativistic charged particle

A geometric formulation of the Lagrangian of relativistic mechanics in terms of jets
bundle was already treated in [38–40], but in this subsection, we are going to treat
the Hamiltonian of relativistic mechanics in the geometrical model cited above in
Sec. 3.

The Lagrangian function of a relativistic particle immerged in an electromag-
netic field

L(t, qi, q̇ i) = m0c
√
q̇µq̇µ + eq̇µA

µ(t, qi),

L(t, qi, q̇ i) = m0c
2

√
1 − v2

c2
+ eφ(t, qi) − e
v · 
A(t, qi),

(57)
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where m0 is the rest mass of the particle. Where the four-vector q̇µ is given by:

q̇µ =
dqµ
dt

=

{
q̇0 = c,

(q̇i)i=1,2,3 = 
v.
(58)

By using the metric ηµν defined in Minkowski space in Sec. 3, the four-vector of
the electromagnetic field is

Aµ =



A0 = A0 =

φ

c
,

(Ai)i=1,2,3 = −(Ai)i=1,2,3 = − 
A.

(59)

The four-momentum vector

pµ =
∂L

∂q̇µ
= m0c

q̇µ

√
q̇v q̇v

+ eAµ =




p0 =
m0c√
1 − v2

c2

+ e
φ

c
=
h

c
, (60a)

pi =
m0√
1 − v2

c2

q̇ i + eAi. (60b)

We do the following change of coordinate

{
P 0 = p0 − eA0 = mc, (61a)

P i = pi − eAi = mq̇ i, (61b)

where m = m0q
1− v2

c2

and P 0, p0 are respectively the mass and the energies (the

Hamiltonians in different system of coordinates) of the particle moving at the
speed 
v.

The Hamiltonian function for a relativistic particle is given by:

pµq̇µ − L = (pµ − eAµ)(pµ − eAµ) −m0c
2 = 0 and pµ =

∂L

∂q̇µ
. (62)

By substituting (57) and (61) in (62), we obtain:

P 0 = p0 − eA0 =
E

c
− e

φ

c
=

√
m0c2 − (pi − eAi)(pi − eAi). (63)

Having regard to the relationship (61a) between q̇ i and pi, more of this, seeing the
relation (63), only the components {q̇i}i=1,3 and {pi}i=1,3 respectively are inde-
pendents, so, the multisymplectic model cited in Sec. 3.2 and the result found in
Sec. 4.2 are valid for the study of the dynamics in the jet bundle J1π = R × TR3
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generated by (ct, qi, q̇ i):

∂2L

∂q̇µ∂q̇v
=

m0√
1 − v2

c2

[
ηµv +

q̇µq̇v
c2 − v2

]
�= 0, ∀µ = v = 0, 3.

The Lagrangian is hyper-regular. The Lagrangian formalism in the first-jet bun-
dle J1π is equivalent to a Hamiltonian one treated on the first-jet bundle J1π∗

generated by the following local coordinate system (ct, qi, pi) as in Sec. 3.2. The
Hamilton–Jacobi principal (14) is verified for:

Ωh = −dpi ∧ dqi − dp0 ∧ dq0,

Xh =
∂

∂q0
+ q̇

i ∂

∂qi
+ ṗ

i ∂

∂pi
.

(64)

Because the laws of physics must be invariant of a system of coordinates to another,
in this case, the dynamic of the particle can be studied on the first-jet bundle
J1π∗ = R × T ∗N generated by the following coordinate system (ct, qi, P i). The
Hamilton–Jacobi principal (14) becomes:

Ω̃h = −dPi ∧ dqi − dP0 ∧ dq0 = −dPµ ∧ dqµ,

X̃h =
∂

∂q0
+ q̇

i ∂

∂qi
+ Ṗ

i ∂

∂P i
.

(65)

By using the change of coordinates (61), we have

Ω̃h = −dPµ ∧ dqµ = −dpµ ∧ dqµ + edAµ ∧ dqµ. (66)

By using dqµ ∧ dqv = −dqv ∧ dqµ, ∀µ, v = 0, 3,

dAµ ∧ dqµ = dA0 ∧ dq0 + dAi ∧ dq i

=
∂A0

∂qi
dq i ∧ dq0 +

∂Ai

∂qj
dqj ∧ dq i +

∂Ai

∂q0
dq0 ∧ dqi

=
(
∂Ai

∂q0
− ∂A0

∂qi

)
dq0 ∧ dq i +

1
2

(
∂Ai

∂qj
− ∂Aj

∂qi

)
dqj ∧ dq i

=
[
F0idq0 +

1
2
Fjidqj

]
∧ dq i

=
1
2
Fµνdqµ ∧ dqv =

1
2
Fνµdqv ∧ dqµ. (67)

Inserting (67) in (66)

Ω̃h = −dPµ ∧ dqµ = −
(
dpµ +

e

2
Fµνdqv

)
∧ dqµ

= −dp0 ∧ dq0 − dpi ∧ dq i − e

2
Fijdqj ∧ dq i − eF0idq i ∧ dq0. (68)
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By using the contraction (38):(
∂

∂qρ

)
dqµ = δµ

ρ and
(

∂

∂qρ

)
(dqµ ∧ dqv)dqµ = δµ

ρdq
v − δv

ρdq
µ. (69)

The Hamilton–Jacobi principal (14) gives:

i(X̃h)Ω̃h =
∂p0

∂qi
dqi +

∂p0

∂pi
dpi − e Fi0dq

i − q̇
i ∂p0

∂qj
δj
i dq

0 + q̇
j
δi
jdpi

− e

2
Fij

[
q̇

ρ
δj
ρdq

i − q̇
ρ
δi
ρdq

j
]
+ e Fi0q̇

j
δi
jdq

0

− Ṗ
j ∂p0

∂pi
δj
i dq

0 − Ṗ jδ
j
i dq

i = 0. (70)

Knowing that ∂
∂P i (dp j) = δj

i and P i = pi − eA. By collecting the terms in (70):

i(X̃h)Ω̃h =
(
e Fi0q̇

i − Ṗ
i ∂p0

∂pi
− Ṗ i

dqi

dq0
− q̇

i ∂p0

∂qi

)
dq0

+
(
∂p0

∂qi
− e Fi0 − eq̇

j
Fij

)
dqi +

(
∂p0

∂pi
+ q̇i

)
dpi = 0. (71)

By geometric construction that was made and without going through the derivation
of the Hamiltonian (63), if we identify term-by-term in equality (71), the system
of the HDW equations (31) which describes the dynamic of a particle plunged in
electromagnetic field gives:


∂p0

∂pi
= −q̇i = q̇

i
, (72a)

−∂p0

∂qi
= e F0i − eq̇

j
Fij = e(F0i + q̇jFij) = ṗi. (72b)

Inserting Eqs. (72a) and (72b) in the first bracket of the relation (71),

e Fi0q̇
i − Ṗ

i ∂p0

∂pi
− Ṗ i

dqi

dq0
− q̇

i ∂p0

∂qi
= −eq̇ i

q̇
j
Fij = 0.

By multiplying the system (72) by “c”,

∂h

∂pi
= q̇i, (73a)

− ∂h

∂qi
= e( 
E +
̇q ∧ 
B)i = 
Fi Lorentz force = ṗi. (73b)

In particular Ṗ i = −∂P0
∂qi = e∂Ai

∂q0 − eq̇
j
Fij .
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We conclude that such a geometrical construction lets one to identify the
Hamilton–Carton two-form Ω̃h (65) to the charged two-symplectic form already
used in the work [41]. This geometrical model is invariant by boosts when mov-
ing from one fiber to another horizontally on Minkowski space which coincides, in
this model, with the configuration bundle E. The relation (68) shows how changes
Ω̃h from the coordinate system (ct, qi, P i) to the other one (ct, qi, pi) which is the
result already put in [41] where Ω̃h(65) was defined on the base space M taken as
Minkowski space.

We can also do the following remark that the contribution of the term ∂p0

∂q0

disappears naturally in the expression of Ω̃h (71). This is explained by the fact that
the expression (63) of p0 is time implicit.

The classical limit which is the development to the first order of the theory
leaves invariant the model built where just tender the terms v

c → 0 and

1(
1 − v2

c2

)α =
(

1 − v2

c2

)−α

= 1 + α
v2

c2
.

The classical limit of the term[
1 − 1

c2
(
1 − v2

c2

) q̇ iq̇i

]1/2

= 1 +
v2

2c2
= 1 +

(pi − eAi)2

2c2
. (74)

Inserting (74) in (61b) and (63), the classical limit of the Hamiltonian of the particle

h = m0c
2 +

m0

2
(pi − eAi)2 + eφ, (75)

if we take the origin of energies h0 = m0c
2. Inserting (60b) in (73b), we retrieve

the Newton’s law

m0q̈
i = −e∂iφ+ e(
̇q ∧ 
B)i. (76)

In this case, the theory is invariant by Galilean transformation which is the classical
limit of boosts.

By using the result found in Sec. 4.2, the model built in Sec. 3.2 remains valid
for the study of the dynamics of free particle (i.e. Aµ = 0) in the jet bundle
J1π∗ = R × T ∗R3 generated by (ct, qi, pi) and the last remark that we can do is
that the multisymplectic Hamiltonian formalism for relativistic mechanics is the
familiar homogeneous Hamiltonian formalism of non-relativistic mechanics.

5.2. Dynamic of the free electromagnetic field

Recall the expression of the Lagrangian of a free electromagnetic field

L = −1
4
FµνFµv ,

where Fµν = ∂µAv − ∂vAµ, Aµ(xρ) is the electromagnetic field and vµν = ∂µAv

is the velocity of the field Av, ∂µ = ∂
∂xµ . Having regarded to the expression of the
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Lagrangian L(∂µAv) and xµ is implicit, the theory is four-symplectic. By using the
result obtained in Sec. 4.2, we can study the dynamic of the field, by using the
multisymplectic geometry studied in Sec. 2.2, on J1π∗ = R4 × (T 1

4 )∗N where N is
the space of the field Aµ where group of symmetry is U(1).

L = −1
4
FµνFµν = −1

4
(∂µAv − ∂vAµ)(∂µAv − ∂vAµ)

= −1
2
[(∂µAv)(∂µAv) − (∂vAµ)(∂µAv)] = −1

2
(∂µAv)Fµν ,

pµν =
∂L

∂vµν
= −Fµν = Fνµ,

∂L

∂xµ
= 0.

(77)

The Hamiltonian of the field

h = L− vµν
∂L

∂vµν
= −1

2
(∂µAv)Fµν − (∂µAv)(−Fµν) =

1
2
(∂µAv)Fµν

=
1
4
FµνFµν =

1
4
pµνpµν = h(pµν) (78)

so,

dh =
∂h

∂pµν
dpµν = FµνdF

µν .

By using (13) and (15), we obtain

Ωh = −dpµν ∧ dAv ∧ d3xµ − dh ∧ d4x

= dFµν ∧ dAv ∧ d3xµ − FµνdFµν ∧ d4x

= dFµν ∧ ∂Av

∂xρ
dxρ ∧ d3xµ − FµνdF

µν ∧ d4x

= ∂µAvdF
µν ∧ d4x− FµνdF

µν ∧ d4x

= ∂vAµdF
µν ∧ d4x = −1

2
FµνdF

µν ∧ d4x (79)

and

Xh =
∂

∂xρ
+ Sρ

σ ∂

∂Aσ
−Gσγ

ρ
∂

∂F σγ
.

Knowing that dFµν is one-form on J1π∗ and by using (40), we have

i

(
∂

∂xρ

)
Ωh = −1

2
[∂ρFµν ∧ dFµν ∧ dx4 + Fµν(∂γF

µν)δγ
ρd

4x+ FµνdFµν ∧ d3xρ].
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The Hamilton–Jacobi principal (14) gives:

i(Xh)Ωh = −1
2
[∂ρFµν ∧ dFµν ∧ dx4 + Fµν(∂γF

µν)δγ
ρd

4x+ FµνdFµν ∧ d3xρ]

− 1
2
(−Gσγ

ρ)δσ
µδ

γ
vdF

µν ∧ dx4

= (∂ρF
µν −Gµν

ρ)dFµν ∧ dx4 + 2Fµν∂ρF
µνd4x = 0. (80)

By identification the terms in (80), we obtain

∂ρF
µv −Gµv

ρ = 0 ⇒ Gµv
ρ = ∂ρF

µv, in particular for ρ = µ, ∂µF
µv = 0 =

∂h

∂Av︸ ︷︷ ︸
⇓

�Av − ∂v∂µA
µ︸ ︷︷ ︸

Lorentz gauge=0

= 0

︸ ︷︷ ︸
⇓

�Av = 0


propagation equation for

the free electromagnetic
field Av


,

2Fµv(∂ρF
µv)d 4x = ∂ρ(FµvF

µv)d 4x = 0 ⇒ h = constant. (81)

Because the k-vector-field Xh is holonomic (SOPDE and integrable), Sρ
σ = ∂ρA

σ.
In conclusion of this Sec. 5, we deduce that the multisymplectic geometry is

the favorable geometry for describing both the relativistic dynamics for gauge the-
ories (boson fields) (i.e. the electromagnetic field) which dynamic obeys at Maxwell
equations, e.g. Sec. 5.2 and the mechanic which obeys at Newton equations in the
classical limit, e.g. Sec. 5.1 respectively.

6. Conclusion

After this study, we deduce that the extension of the multisymplectic geometry
to the relativistic mechanics operates successfully. Furthermore, we have proved
that in the absence of the gravitational field, both the propagation of a free field
(the movement of a free particle or a particle immerged in a weak field as the
electromagnetic field) on the space respectively lead to a construction of a multi-
symplectic geometry on the first-jet bundle whose base space is treated globally.
Finally, we have found a direct relationship between the k-cosymplectic structure
and the multisymplectic geometry.
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[28] F. Hélein and J. Kouneiher, Covariant Hamiltonian formalism for the calculus of
variations with several variables: Lepage–Dedecker versus De Donder–Weyl, Adv.
Theor. Math. Phys. 8(3) (2004) 565–601.

[29] J. E. Marsden, S. Pekarsky, S. Shkoller and M. West, Variational methods, multisym-
plectic geometry and continuum mechanics, J. Geom. Phys. 38(3–4) (2001) 253–284.

[30] C. Paufler and H. Romer, Geometry of Hamiltonian n-vector fields in multisymplectic
field theory, J. Geom. Phys. 44(1) (2002) 52–69.
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