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Introduction

This Algebra 1 course is specifically designed for first-year mathematics students in the

Department of Mathematics. The course aims to provide a strong foundation in fundamental

algebraic concepts that are essential for further study in mathematics.

We will begin with Chapter 1: Logical Reasoning, where the focus will be on understanding

logical propositions, mathematical quantifiers, and constructing rigorous proofs. These founda-

tional skills are crucial for approaching more advanced topics.

In Chapter 2: Sets and Applications, we will cover the basic concepts of sets and their

we provide some examples for a better understanding. This chapter will introduce essential

definitions and provide examples to illustrate these concepts in a broader mathematical context.

Chapter 3: Relations will explore meaning and properties of relations, with a particular

focus on equivalence and order relations. Understanding these relations is key to grasping how

different mathematical ideas are interconnected.

Chapter 4: Algebraic Structures will cover important algebraic structures such as groups,

rings, and fields. This chapter will delve into the abstract properties of these structures and

their role in algebraic reasoning.

Finally, Chapter 5: Polynomials will address polynomial rings and polynomial arithmetic.

By the end of this course, students will have a comprehensive understanding of Algebra 1,

preparing them for more advanced topics in mathematics.
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Chapter 1

Logic Concepts

In this foundational chapter, we deal with the fundamental principles of mathematical logic

and proof reasoning. This chapter lays the groundwork essential for the structured and logical

exploration of mathematical concepts.

This chapter delves into the intricacies of logical connectors, truth tables, and quantifiers,

understanding their role as the bedrock of rigorous mathematical reasoning. Through the explo-

ration of proof methods like direct proofs and proof by contradiction, it will equip the students

with the tools necessary to establish the validity of mathematical statements.

1.1 Assertions (Propositions)

Definition 1.1.1. An assertion (or a logical statement) is a sentence that is either true or false,

but not both at the same time.

Example 1.1.2. 1. ”
√
2 is an irrational number” is a true assertion.

2. ”16 is a multiple of 2” is a true assertion.

3. ”19 is a multiple of 2” is a false assertion.

4. ”Good morning” is not a logical statement.

Assertions are represented by uppercase letters P,Q,R, . . . If an assertion is true, we assign

it the value 1 (or T); if it is false, we assign it the logical value 0 (or F).

Truth Table for Assertion P

P

1

0

4
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Logical Connectors

Logical connectors allow us to create compound statements, called composite assertions,

from assertions P , Q, R, . . .We can determine the truth value of these compound assertions

based on the truth values of P , Q, R, . . . The most common logical connectors are “not,” “and,”

“or,” “implies,” and “if and only if.”

Negation

The negation of the assertion P is denoted as P (or sometimes ¬P ), and it is true when P

is false. For the logical connector not, we have the following truth table:

P P

0 1

1 0

Example 1.1.3. ”12 is a multiple of 2” is a true statement. Its negation is ”12 is not a multiple

of 2,” which is a false statement.

”14 is a multiple of 3” is a false statement. Its negation is ”14 is not a multiple of 3,” which is

a true statement. In this example:

It is important to note that the truth value of an assertion and its negation can be evaluated

independently.

Conjunction

The conjunction logical connector is represented by the symbol ∧. It allows us to combine

two propositions into a single proposition that is true only if both original propositions are true.

For example, if P and Q are true propositions, then P ∧Q (P and Q) is also true.

Let P , Q be two logical statement, we have the following truth table:

P Q P ∧Q

1 1 1

1 0 0

0 1 0

0 0 0

Disjunction

The disjunction logical connector is represented by the symbol ∨. It allows us to combine

two propositions into a single proposition that is true if at least one of the original propositions
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is true. For example, if P is a true proposition and Q is a false proposition, then P ∨Q (P or

Q) is true.

Let P , Q be two logical statement, we have the following truth table:

P Q P ∨Q

1 1 1

1 0 1

0 1 1

0 0 0

Remark 1.1.4. In general, the proposition P ∧ Q is true if both P and Q are true, and false

otherwise. The proposition P ∨Q is true if at least one of the propositions P and Q is true, and

false otherwise.

Note that if both P and Q are true, then P ∨Q is true. This is called an ”inclusive or.”

Remark 1.1.5. 1. For any proposition P , one of the two propositions P or P is true, and

the other is false. It follows that the proposition P ∧P is always false, and the proposition

P ∨ P is always true.

2. The negation of P ∧Q is P ∨Q, and the negation of P ∨Q is P ∧Q

3. The proposition ”Q∨P” means the same thing as the proposition ”P ∨Q”. Similarly, the

proposition ”Q∧P” means the same thing as the proposition ”P ∧Q”. We say that ∧ and

∨ are commutative.

4. We can combine ∧, ∨ , and ¬ to form new propositions. It is important to pay attention

to the placement of parentheses because the meaning depends on it. For example, let’s

assume that proposition P is false and proposition Q is true. In this case, P ∧ (P ∨ Q)

is false (because P is false, so P and (any proposition) is always false, regardless of that

(proposition)). However, (P ∧ P ) ∨Q is true (because Q is true, so (any proposition) OR

Q is true, regardless of that (proposition)).

Implication

The implication logical connector is represented by the symbol ⇒ (or →). It establishes a

relationship between two propositions, where the first proposition (called the antecedent) implies

the second proposition (called the consequent). If the antecedent is true, then the consequent

must be true, but if the antecedent is false, we cannot draw any conclusions about the consequent.
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Let P , Q be two logical statement, we have the following truth table:

P Q P ⇒ Q

1 1 1

1 0 0

0 1 1

0 0 1

Remark 1.1.6. 1. In practice, if P , Q, and R are three assertions, then the composite as-

sertion (P ⇒ Q) ∧ (Q ⇒ R) is written as (P ⇒ Q ⇒ R).

2. The implication Q ⇒ P is called the reciprocal implication of P ⇒ Q.

3. The implication Q ⇒ P is called the contrapositive implication of P ⇒ Q.

Examples 1.1.7. � Let the following assertions

1. Antecedent P : It is raining.

2. Consequent Q: The ground is wet.

In logical notation, this can be written as P ⇒ Q . If P is true (it is raining), then Q must

also be true (the ground is wet). However, if P is false (it is not raining), the implication

P ⇒ Q is still considered true regardless of whether Q is true or false.

� Let the following assertions

1. Antecedent P : A number is divisible by 4.

2. Consequent Q: The number is divisible by 2.

In logical terms, this is P ⇒ Q . If a number is divisible by 4, it must be divisible by 2.

This implication is always true because divisibility by 4 guarantees divisibility by 2.

Its contrapositive is ” If a number is not divisible by 2, then it is not divisible by 4.”

The contrapositive of this statement is logically equivalent to the original implication. In

formal notation, the contrapositive is Q ⇒ P . If a number is not divisible by 4, then it is

not divisible by 2.

Equivalence

An assertion called the equivalence of P and Q and written as P ⇔ Q, is a statement that

is true when P and Q are both true or both false, and false in all other cases. In other words,
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if P is true, then Q is true, and if P is false, then Q is false.

Vocabulary: To say that P is equivalent to Q, we also say that P is true if and only if Q

is true. We also say that P is a necessary and sufficient condition for Q.

The table below shows that proposition P is equivalent to proposition Q if and only if they

are both true or both false.

P Q P ⇒ Q Q ⇒ P P ⇔ Q

1 1 1 1 1

1 0 0 1 0

0 1 1 0 0

0 0 1 1 1

Properties of Equivalence:

1. P is equivalent to P (equivalence is reflexive).

2. If P is equivalent to Q, then Q is equivalent to P (equivalence is symmetric).

3. If P is equivalent to Q and Q is equivalent to R, then P is equivalent to R (equivalence is

transitive).

4. P is equivalent to Q if and only if “not P” is equivalent to “not Q.”

Example of Transitivity of Equivalence:

Let a and b be real numbers. Let P , Q, and R be the following propositions:

P : a+ 1 > b+ 1

Q : a > b

R : a− b > 0

Since P is equivalent to Q and Q is equivalent to R, we can conclude that P is equivalent to R.

1.2 Mathematical Quantifiers

Definition 1.2.1. Let E be a set. A predicate on E is a statement containing variables, such that

when each of these variables is replaced by an element of E, we obtain a proposition (statement).

A predicate containing the variable x will be denoted as P (x).
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Example 1.2.2. The statement P (n) defined as ”n is a multiple of 2” is a predicate on N. It

becomes a proposition when we assign an integer value to n. For example:

1. The proposition P (10) defined as ”10 is a multiple of 2” is true when n is replaced by 10.

2. The proposition P (11) defined as ”11 is a multiple of 2” is false when n is replaced by 11.

Starting from a predicate P (·) defined on a set E, we can construct new statements called

quantified statements using the quantifiers ”there exists (∃)” and ”for all (∀)”.

Definition 1.2.3. Let P (·) be a predicate defined on a set E.

1. The quantifier ”for all” (also called ”for every”) denoted as ∀, enables the formulation of

the quantified statement ”∀x ∈ E,P (·)” which is true when all elements x of E satisfy

P (·).

2. The quantifier ”there exists” denoted as ∃, allows defining the quantified statement ”∃x ∈
E,P (x)” which is true when at least one element x0 belonging to E satisfies the statement

P (x).

Remark 1.2.4. There exists a unique x ∈ E, P (x), is noted ”∃!x ∈ E,P (x)”.

Example 1.2.5. 1. The statement ”x2+2x−3 < 0” is a predicate defined on R. It can be true

or false depending on the value of x. The quantified statement ”∀x ∈]−3, 1[, x2+2x−3 < 0”

is a true statement because the quantity x+ 2x− 3 is strictly negative for all x belonging

to the open interval ]− 3, 1[.

2. The quantified statement ”∃x ∈ R, x2 = 4” is true because there exists (at least) one

element x in R that satisfies x2 = 4. This is the case for the two real numbers -2 and 2.

Negation Rules for Quantified Statements

The negation of ”for every element x in E, the statement P (x) is true” is ”there exists an

element x in E for which the statement P (x) is false.”

(∀x ∈ E, P (x)) ⇔ (∃x ∈ E,P (x)).

The negation of ”there exists an element x in E for which the statement P (x) is true” is

”for every element x in E, the statement P (x) is false.”

(∃x ∈ E, P (x)) ⇔ (∀x ∈ E,P (x)).

Examples 1.2.6. 1. The negation of (∃x ∈ (0,+∞), x > 1) is (∀x ∈ (0,+∞), x ≤ 1).
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2. The negation of (∀x ∈ R, 2x+ 2 = 0) is (∃x ∈ R, 2x+ 2 ̸= 0).

Remark 1.2.7. It is not more difficult to write the negation of complex sentences. For the

assertion

(∀x ∈ E,P (x) ⇒ Q(x)), its negation is (∃x ∈ E,P (x) ∧Q(x)). Since(
∀x ∈ E,P (x) ⇒ Q(x)) ⇔ (∀x ∈ E,P (x) ∨Q(x)

)
.

1.3 Logical reasoning for proofs

There are many ways to prove mathematical statements. Here we will outline some usual

techniques.

Direct reasoning

To show that the logical implication P ⇒ Q is true, we need to assume that P is true and

demonstrate that Q is true as a result. Which means, suppose that P is true (assumption). Use

logical laws and reasoning to deduce Q from P .

Example 1.3.1. Prove that, if a, b ∈ Q, a+ b ∈ Q.

We have a, b ∈ Q, means a = p
q and b = p′

q′ , with p, p′ ∈ Z and q, q′ ∈ Z∗ then

a+ b =
pq′ + p′q

qq′
∈ Q, (pq′ + p′q ∈ Z and qq′ ∈ Z∗).

Case by case reasoning

To verify an assertion P (x) for all x ∈ E, we prove the assertion for x belonging to a set A

of E, then for the x that doesn’t belong to A and belong to E. This is the disjunction method

or case by case.

Example 1.3.2. Prove that ∀n ∈ N, n(n+1)
2 is an integer.

We distinct two cases

(a) If n is even, then n = 2k, and n+ 1 = 2k + 1 with k ∈ N, thus

n(n+ 1)

2
= k(2k + 1),

which is clearly an integer number.

(b) If n is odd, then n = 2k + 1, and n+ 1 = 2k + 2 = 2(k + 1) with k ∈ N, thus

n(n+ 1)

2
= (k + 1)(2k + 1),

which is also an integer number.
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Contrapositive reasoning

Contrapositive reasoning is a logical method based on the principle that if a logical impli-

cation is true, then its contrapositive is also true. Consider a logical implication of the form

”If P , then Q” (P implies Q). The contrapositive of this implication is ”If not Q, then not

P” (Q implies P ). To demonstrate the validity of the initial implication, we can prove that

its contrapositive is true. Contrapositive reasoning is useful when a direct proof of the initial

implication is difficult. By proving the contrapositive, we can obtain a simpler or more direct

proof.

Example 1.3.3. Let a, b > 0. Prove that, if a ̸= b then a
b+1 ̸= b

a+1 .

The contrapositive of this proposition is ”if a
b+1 = b

a+1 then a = b”

a

b+ 1
=

b

a+ 1
⇒ a(a+ 1) = b(b+ 1)

⇒ (a− b)(a+ b+ 1) = 0.

This implies a− b = 0 or a+ b+ 1 = 0. Since a, b > 0, then a = b.

Contradiction reasoning

Proof by contradiction is a logical method used to prove a proposition by initially assuming

its negation and then demonstrating that it leads to a contradiction or an absurdity.

Example 1.3.4. Proof that
√
2 is not a rational number.

Suppose that
√
2 = m

n , with pgcd(m,n) = 1, so that 2n2 = m2. Which means that m2 is even,

this implies that m is even. Which means m = 2k, k ∈ Z. Then 2n2 = 4k2, which implies that

n2 = 2k2. Hence, m2 is even, this implies that n is even. Therefore, 2 is a common divisors for

n and m, which is a contradiction with pgcd(m,n) = 1.

Reasoning by counter-example

The reasoning by counterexample is a logical method used to refute a proposition or state-

ment by presenting a concrete example that contradicts it. If we need to prove an assertion of

the form ∀x ∈ E, P (x) is true, we need to prove P (x) true for all x ∈ E. However, if we want

to prove that this assertion is false, then we need to find x ∈ E such that P (x) is false.

Example 1.3.5. Prove that the following assertion is false ”Every positif integer is the sum of

three squares.”

Let a = 7 an integer number. However, the squares less than 7 are just 1 and 4, which means 7

can’t be the sum of three squares. Hence, the propositions is false.
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Induction reasoning

Induction is a method of mathematical proof used to establish that a statement P (n) holds

true for all natural numbers.

The process of mathematical induction consists of three main steps:

1. We prove that the statement is true for the first value, n0. This serves as the base case

for the induction.

2. We assume that the statement is true for an arbitrary value k, which is known as the

inductive hypothesis.

3. We prove that if the statement is true for k, it is also true for k + 1. This completes the

induction step.

Example 1.3.6. Prove that 1 + 2 + 3 + ...+ n = 1
2n(n+ 1).

Note the proposition 1+2+3+ ...+n = 1
2n(n+1) by (Pn). Let n = 1, P1 is true (1 = 1

2(1)(2)).

Suppose that (Pn) is true and prove that (Pn+1) is true.

(Pn+1) : 1 + 2 + 3 + ...+ n+ (n+ 1) =
1

2
(n+ 1)(n+ 2).

We have

1 + 2 + 3 + ...+ n+ (n+ 1) =
1

2
n(n+ 1) + (n+ 1)

= (n+ 1)(
1

2
n+ 1)

=
1

2
(n+ 1)(n+ 2).

Which means (Pn+1) is true. Then the proposition (Pn) is true.

1.4 Some exercises with solutions

Exercise 1.4.1. Let P , Q and R three propositions, prove that (P ⇒ Q) ⇔ (P ∨ Q); (P ⇒
Q) ⇔ (Q ⇒ P ).

Solution

Let P , Q and R three propositions
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� (P ⇒ Q) ⇔ (P ∨Q)

P Q P P ⇒ Q P ∨Q ⇔
1 1 0 1 1 1

1 0 0 0 0 1

0 1 1 1 1 1

0 0 1 1 1 1

� (P ⇒ Q) ⇔ (Q ⇒ P )

P Q P Q P ⇒ Q Q ⇒ P ⇔
1 1 0 0 1 1 1

1 0 0 1 0 0 1

0 1 1 0 1 1 1

0 0 1 1 1 1 1

Exercise 1.4.2. Let A, B two sets in R, write using ∀, ∃ the following assertions:

A = ∅, A ⊂ B, A ⊈ B.

Solution

Let A, B two sets in R

� A = ∅ ⇔ ∀x ∈ R, x /∈ A.

� A ⊂ B ⇔ ∀x ∈ A, x ∈ B.

� A ⊈ B ⇔ ∃x ∈ A, x /∈ B.

Exercise 1.4.3. Give the negation of the following assertions, Are these assertions true or

false?

a) ∃x ∈ R, ∀y ∈ R, x+ y > 0.

b) ∀x ∈ R, ∃y ∈ R, x+ y > 0.

Solution :

a) The negation of the proposition (a) is ∀x ∈ R, ∃y ∈ R, x+ y ≤ 0.

The proposition ∃x ∈ R, ∀y ∈ R, x+ y > 0 is false

(Since, it is sufficient to choose x = −y − 1, then x+ y < 0).
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b) The negation of the proposition (b) is ∃x ∈ R, ∀y ∈ R, x+ y ≤ 0.

The proposition ∀x ∈ R, ∃y ∈ R, x+ y > 0 is true

(Let x ∈ R, consider y = −x+ 1).

Exercise 1.4.4. Let A = {2, 3, 6, 8}, determine the truth value of each of the following propo-

sitions

1. ∃x ∈ A, such that x+ 2 = 4.

2. ∀x ∈ A, x+ 3 < 9.

3. ∀x ∈ A, x+ 4 ≥ 11.

4. ∃x ∈ A, such that x is even.

5. ∃x ∈ A, such that x− 5 is a natural number.

Solution :

Let A = {2, 3, 6, 8}. We evaluate the truth value of each proposition:

1. ∃x ∈ A, such that x+ 2 = 4.

Solution: Solving x+ 2 = 4, we find x = 2. Since 2 ∈ A, this proposition is true.

2. ∀x ∈ A, x+ 3 < 9.

Solution: Evaluate x+ 3 for each x ∈ A:

2 + 3 = 5, 3 + 3 = 6, 6 + 3 = 9, 8 + 3 = 11.

Since 8 + 3 = 11 ≥ 9, this proposition is false.

3. ∀x ∈ A, x+ 4 ≥ 11.

Solution: Evaluate x+ 4 for each x ∈ A:

2 + 4 = 6, 3 + 4 = 7, 6 + 4 = 10, 8 + 4 = 12.

Since 6, 7, 10 < 11, this proposition is false.

4. ∃x ∈ A, such that x is even.

Solution: The even numbers in A are 2, 6, 8. Since these exist, the proposition is true.

5. ∃x ∈ A, such that x− 5 is a natural number.

Solution: Solve x− 5 ≥ 0, which gives x ≥ 5. The numbers 6, 8 ∈ A satisfy this condition.

Hence, the proposition is true.
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Exercise 1.4.5. (I) Using the quantifiers ∀ and ∃, write the following

1. For all real number x, its square is positif.

2. For any natural number n, there exists a real number x, such that the exponential of

x is equal to n.

3. Let f be a function defined from R to R such that

� f is the zero function.

� f is constant.

� f is an even function.

(II) Write the negation of the previous propositions.

Solution :

(I) Writing with quantifiers:

1. For all real numbers x, its square is positive:

∀x ∈ R, x2 ≥ 0.

2. For any natural number n, there exists a real number x, such that the exponential of x

equals n:

∀n ∈ N, ∃x ∈ R, ex = n.

3. Let f be a function f : R → R:

� f is the zero function:

∀x ∈ R, f(x) = 0.

� f is constant:

∃c ∈ R, ∀x ∈ R, f(x) = c.

� f is an even function:

∀x ∈ R, f(−x) = f(x).

(II) Negations:

1. ∃x ∈ R, x2 < 0.
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2. ∃n ∈ N, ∀x ∈ R, ex ̸= n.

3. For f : R → R:

� f is not the zero function:

∃x ∈ R, f(x) ̸= 0.

� f is not constant:

∀c ∈ R, ∃x ∈ R, f(x) ̸= c.

� f is not an even function:

∃x ∈ R, f(−x) ̸= f(x).

Exercise 1.4.6. Prove that

1. ∀n ∈ N, if n2 is even then n is even.

2. ∀x, y ∈ R, if x ̸= 2 and y ̸= 2 then xy − 2x− 2y + 4 ̸= 0.

3. ∀x, y ∈ R, xy ≤ 1
2(x

2 + y2).

4. ∀n ∈ N,
n∑

k=0

2k = 2n+1 − 1.

Solution :

1. Prove: ∀n ∈ N, n2 is even =⇒ n is even.

Using contrapositive,
(
∀n ∈ N, n is odd =⇒ n2 is even.

)
If n is odd, then n = 2k + 1 for

some k ∈ N. This implies n2 = (2k+1)2 = 4k2+2k+1 = 2(2k2+k)+1, where 2k2+k ∈ N.
Hence, n2 is odd.

2. Prove: ∀x, y ∈ R, x ̸= 2 and y ̸= 2 =⇒ xy − 2x− 2y + 4 ̸= 0.

Using contrapositive, ∀x, y ∈ R, xy − 2x− 2y + 4 = 0 =⇒ x = 2 or y = 2.

We have xy − 2x− 2y + 4 = (x− 2)(y − 2) = 0. Then, (x− 2) = 0 or (y − 2) = 0.

Which implies, x = 2 or y = 2.

3. Prove: ∀x, y ∈ R, xy ≤ 1
2(x

2 + y2).

We have (x− y)2 ≥ 0

x2 + y2 ≥ 2xy =⇒ 1

2
(x2 + y2) ≥ xy.
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4. Prove: ∀n ∈ N,
n∑

k=0

2k = 2n+1 − 1.

Use induction:

� Base case (n = 0):
0∑

k=0

2k = 20 = 1, and 20+1 − 1 = 1. True.

� Inductive step: Assume true for n, prove for n+ 1:

n+1∑
k=0

2k =
n∑

k=0

2k + 2n+1.

By the inductive hypothesis:

n+1∑
k=0

2k = (2n+1 − 1) + 2n+1 = 2n+2 − 1.

Thus, the result holds.



Chapter 2

Sets and applications

This chapter introduces fundamental concepts of sets, elements, subsets, and set operations

(union, intersection, complement) that are frequently used in linear algebra, it focuses also on

functions and mappings, including injective, surjective, and bijective functions. It explores

the composition of functions and the concept of reciprocal functions, which are crucial for

understanding transformations and operations. Additionally, it discusses the direct and inverse

images of sets under a function, providing students with the essential tools to represent and

analyze mathematical relationships and functions.

2.1 Sets

Definition 2.1.1. (Sets in Extension and Comprehension) A set E = {a, b, ...} defined by listing

its elements a, b, ... is called a set defined in extension. If E = {x, P (x)} is the set of elements

x that satisfy the proposition P , then E is called a set defined in comprehension.

Example 2.1.2. � {1, 2} is a set defined in extension.

� {x ∈ R, x2 − 2 = 0} is a set defined in comprehension.

Definition 2.1.3. (Special Sets)

� The empty set, denoted by ∅, is a set that does not contain any elements.

� A set with only one element is called a singleton.

� A set with exactly two distinct elements is called a pair.

� The cardinality of a set E, denoted as card(E), is the number of elements in a finite set.

18
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Definition 2.1.4. (Set Inclusion) A set F is said to be contained in, a subset of, or included

in set E, denoted as F ⊆ E, if every element of F is also an element of E. If there exists at

least one element in F that is not in E, it is denoted as F ⊈ E.

Remark 2.1.5. (Properties of Set Inclusion)

� Every set E is a subset of itself (reflexivity). E ⊆ E.

� If set F is a subset of set E and set G is a subset of set F , then G is also a subset of E

(transitivity). If F ⊆ E and G ⊆ F , then G ⊆ E.

� If E and F are sets such that E ⊆ F and F ⊆ E, then E and F have the same elements,

and they are equal E = F (Antisymmetry).

� If F ⊂ E, then Card(F ) ≤ Card(E).

Definition 2.1.6. (Power set) Let E be a set, the subsets of E form a set called set of parts of

E (Power set) and noted P(E)(The set of all subsets of E). In other words, A ∈ P(E) means

A ⊂ E.

Remark 2.1.7. The elements of P(E) are subsets of E and not elements in E. Moreover,

unlike the set E that can be empty, the set of P(E) can’t be empty, because it contains at least

E, ∅.

Example 2.1.8. If E = {a, b, c} then

P(E) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, E}.

Proposition 2.1.9. If E is a finite set of cardinal n, the P(E) is also finite with Card(P(E)) =

2n.

Definition 2.1.10. (Complement) If F ⊆ E, the complement of F in E is the set CEF , also

denoted as F c or F c
E, defined by

F c = {x ∈ E, x /∈ F}.

Example 2.1.11. Let F = {x ∈ N, 0 ≤ x ≤ 6} be a set, it’s complement in N is

F c
N = {x ∈ N, x > 6}.

However, it’s complement in Z is

F c
Z = {x ∈ Z, x < 0 or x > 6} ≠ F c

N.
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Definition 2.1.12. (Intersection) The intersection of two sets E and F is the set E ∩ F con-

sisting of elements x that are both in E and in F . Two sets E and F are said to be disjoint if

E ∩ F = ∅.
E ∩ F = {x | x ∈ E and x ∈ F}.

Proposition 2.1.13. 1. E ∩ F = F ∩ E (commutativity).

2. E ∩ (F ∩G) = (E ∩ F ) ∩G (associativity).

3. (E ⊂ (F ∩G)) ⇔ [(E ⊂ F ) and (E ⊂ G)].

Definition 2.1.14. (Union) The union of two sets E and F is the set E ∪ F consisting of

elements x that are in E.

E ∪ F = {x | x ∈ E or x ∈ F}.

Proposition 2.1.15. Let F , G two subsets of E we have the following relations, called Morgan’s

laws

� (F ∩G)c = F c ∪Gc.

� (F ∪G)c = F c ∩Gc.

Proposition 2.1.16. Let F and G two subsets of E, then

1. (F c)c = F .

2. F ∩ F c = ∅, F ∪ F c = E.

3. F ⊆ G ⇐⇒ Gc ⊆ F c.

Proposition 2.1.17. Let F , G two finite parts of a set E, then

Card(F ∪G) = Card(F ) + Card(G)− Card(F ∩G).

Definition 2.1.18. (Cartesian Product) The Cartesian product of two sets E and F is the set

E × F = {(x, y) | x ∈ E, y ∈ F}.

The diagonal of a set E is given by

∆E = {(x, x) | x ∈ E} ⊆ E × E.

Proposition 2.1.19. Let E, F two finite non empty sets, we have Card(E ×F ) = Card(E)×
Card(F ).
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Definition 2.1.20. (Difference) If E and F are two sets, the difference E \ F between E and

F is the set of elements of E that are not in F .

E \ F = {x | x ∈ E, x /∈ F}

The symmetric difference E∆F of E and F is given by

E∆F = (E \ F ) ∪ (F \ E).

Remark 2.1.21. If F ⊂ G, then F \G = ∅.

Definition 2.1.22. (Partition of a set)

1. For a non-empty set E, a partition A = {A1, A2, . . . , An} of E is a set of non-empty

subsets of E such that E =
⋃n

i=1Ai = A1 ∪A2... ∪An and Ai ∩Aj = ∅ for i ̸= j.

2. For a partition A = {A1, A2, . . . , An} of a set E, each set Ai is called a cell of the partition.

2.2 Functions and Applications

2.2.1 Functions

Definition 2.2.1. A correspondence f from E to F is called a function if every element x in

E has at most one corresponding element y in F .

� We say that E is the domain or (the source set), and F is called the codomain or (the

target set).

� The element associated to x by f , is called the image of x and it is noted f(x) (means

y = f(x) ).

� The domain of definition of a function f (denoted by Df ) is the set of elements x of E for

which f(x) exists.

Examples 2.2.2. 1. The following correspondence is a function

{(1, 2), (−1, 1), (3, 3)}.

Where, the first component is the input, and the second one is output.

2. The following correspondence is not a function

{(1, 2), (1, 4), (3, 3)}.

Since, there is an input has two different outputs.
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3. The correspondence g that associates each integer with its square is indeed a function, and

we can write it as g : N −→ N, for g(n) = n2, the domain of g is Dg = N.

Definition 2.2.3. Let

f :E −→ F

x 7−→ f(x)

be a function, A is a subset of E and B is a subset of F .

1. The image of A by f is

f(A) = {f(x), x ∈ A ∩Df}.

2. The preimage (or inverse image) of B by f is

f−1(B) = {x ∈ E, f(x) ∈ B}.

3. Let f : E −→ F , if A ⊂ E, we call graph of A, and we note it Gf (A), the subset of E ×F

formed by the couples (x, f(x)) such that x ∈ A ∩Df . Which means

Gf (A) = {(x, f(x)) ∈ E × F | x ∈ A ∩Df}.

Examples 2.2.4. 1. Let g : Z −→ N be a function such that g(n) = n2. Gg = {(n, n2) | n ∈
Z}, g({−1, 1, 0, 2, 3}) = {0, 1, 4, 9}, g−1({9}) = {−3, 3}.

2. Let h : R∗ −→ R defined by h(x) = 1
x .

Gh = {(x, 1x) | x ∈ R∗}, h([−1, 2]) =]−∞,−1] ∪ [12 ,+∞[, and

h−1([2, 3]) =

[
1

3
,
1

2

]
.

2.2.2 Representations of Functions

The representation of a function f : E −→ F depends on the nature of the sets E and F .

The most commonly used representations are as follows

1. Representation using a formula.

Example: Let’s consider the function g : Z −→ N such that g(n) = n2.

2. Representation using a table of values (useful when A is finite).

Example: Let’s consider the function h : {−2,−1, 0, 1, 2} −→ N such that:

n -2 -1 0 1 2

h(n) 4 1 3 1 0
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−2 −1 0 1 2

0

1

2

3

4

x

y

Figure 2.1: The graph of k(x) = x2.

3. Representation using a graph. Example: Let’s consider the function k : R −→ R such

that k(x) = x2. See the graph below:

Definition 2.2.5. (Composition of functions) The composition of the function f : E −→ F and

the function g : F −→ G is the function

g ◦ f :E −→ G

x 7−→ g(f(x)).

Example 2.2.6. Let the functions f , g defined from R to R given by f(x) = 3x − 2 and

g(x) = x2. The composition of f followed by g is the function g ◦ f : R −→ R, such that

g ◦ f(x) = g(f(x)) = (3x− 2)2.

2.2.3 Applications

Definition 2.2.7. A function f is an application (mapping) if every element of E has (exactly)

one image in F . We denote by F(E,F ) the set of all applications from E to F . A function f is

an application if and only if its domain of definition is all of E.

Examples 2.2.8. 1. The function g : Z −→ N, defined by g(n) = n2, is a mapping from Z
to N.

2. The function f : R −→ R, defined by f(x) = 1
x is not a mapping, because Df = R∗ ̸= R.

3. The function IdE : E −→ E, defined by IdE(x) = x, is a specific mapping called the

identity mapping of E.
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2.2.4 Restriction and Extension

Let f : E −→ F be a mapping.

1. The restriction of f to a subset E0 of E is the mapping g : E0 −→ F defined by g(x) = f(x)

for all x ∈ E0 (g is often denoted as f|E0
).

2. The extension of f to a set Ẽ containing E is the function h : Ẽ −→ F defined by

h(x) = f(x) for all x ∈ E.

Example 2.2.9. Let the mapping f : Z −→ N be defined by f(n) = |n|. The restriction of f to

N is the identity mapping IdN. We can also say that the mapping f is an extension of IdN.

Remark 2.2.10. The restriction is always unique, but an extension is not unique.

2.2.5 Equality of mappings

Two mappings f : E −→ F and g : E′ −→ F ′ are equal if E = E′, F = F ′, and for all x ∈ E,

we have f(x) = g(x). In this case, we write f = g.

Example 2.2.11. The mappings f and g defined from N to Z by f(n) = cos(πn) and g(n) =

(−1)n are equal, and we can write f = g.

Proposition 2.2.12. Let f : E −→ F be an application.

1. Let A and B be two subsets of F . Then

(a) If A ⊂ B, then f−1(A) ⊂ f−1(B).

(b) We always have f−1(A ∪B) = f−1(A) ∪ f−1(B).

(c) We always have f−1(A ∩B) = f−1(A) ∩ f−1(B).

2. Let A and B be two subsets of E. Then

(a) If A ⊂ B, then f(A) ⊂ f(B).

(b) We always have f(A ∪B) = f(A) ∪ f(B).

(c) We always have f(A ∩B) ⊂ f(A) ∩ f(B).

3. (a) If A is a subset of E, then A ⊆ f−1(f(A)).

(b) If B is a subset of F , then f(f−1(B)) ⊆ B.
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2.2.6 Injection, Surjection, Bijection

Definition 2.2.13. (injection”one to one”) Let E and F be two sets, and let f : E −→ F be a

function.

f is injective if every element of F has at most one pre-image in E. In other words:

∀x, y ∈ E, f(x) = f(y) ⇒ x = y.

Also, it can be written using the contrapositive as follow

∀x, y ∈ E, x ̸= y ⇒ f(x) ̸= f(y).

Examples 2.2.14. 1. The function f : R −→ R such that f(x) = 3x+1 is one to one, since

f(x) = f(y) implies 3x+ 1 = 3y + 1. Hence x = y.

2. The function f : R∗ −→ R such that f(x) = 1
x is one to one, since

f(x) = f(y) implies 1
x = 1

y . Hence x = y.

3. The function f : R −→ R+ such that f(x) = x2 is not one to one, since f(−1) = f(1).

Theorem 2.2.15. Let f : E −→ F be a function. The following assertions are equivalents

1. f is injective.

2. For all (x, y) ∈ E2, x ̸= y implies f(x) ̸= f(y).

3. For all b ∈ F , the equation f(x) = b has at most one solution x.

Proof : To prove this theorem, it is sufficient to prove 1) ⇒ 2) ⇒ 3) ⇒ 1).

� 1) ⇒ 2), this implication can be obtained easily by using the contrapositive of the injec-

tivity definition.

� 2) ⇒ 3), suppose that the equation f(x) = b has two solutions x, y or more, which means

x ̸= y, using 2), we get f(x) ̸= f(y),i.e., b ̸= b which is a contradiction. Hence, the

equation f(x) = b has at most one solution.

� 3) ⇒ 1), Let x, y ∈ E such that f(x) = f(y), then x is a solution of f(x) = b, b ∈ F , and

also y is a solution of f(y) = b. Using 3), x can’t be different of y, which means x = y.

Hence, f is injective.
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Definition 2.2.16. (Surjection”Onto”) f is surjective if every element of F has at least one

pre-image in E. In other words:

∀y ∈ F, ∃x ∈ E, f(x) = y.

Examples 2.2.17. 1. The function f : R −→ R such that f(x) = 3x+ 1 is surjective, since

∀y ∈ R, ∃x =
y − 1

3
∈ R, f(x) = y.

2. The function f : R∗ −→ R such that f(x) = 1
x is not surjective, since y = 0 has no

antecedent.

3. The function f : R −→ R+ such that f(x) = x2 is surjective, since

∀y ∈ R+, ∃x = ±√
y ∈ R, f(x) = y.

Theorem 2.2.18. Let f : E −→ F be a function. The following assertions are equivalents

1. f is surjective.

2. f(E) = F .

3. For all b ∈ F , the equation f(x) = b has at least one solution x.

Proof : � Show that 1) implies 2). If f is surjective, then for every y in F , there exists x

in E such that y = f(x). Thus, y is in f(E), and since f(E) is a subset of F , it follows

that 2) holds.

� Show that 2) implies 3). If 2) holds, then for every b ∈ F , there exists at least one x in E

such that b = f(x), which means x is a solution to the equation.

� Show that 3) implies 1). If 3) holds, then for every y in F , there is at least one solution x

to the equation f(x) = y, which means x is a pre-image of y.

Definition 2.2.19. (Bijection) f is bijective if it is both injective and surjective (every element

of F has exactly one pre-image in E).

Examples 2.2.20. 1. The function f : R −→ R such that f(x) = 3x + 1 is bijective, since

it is injective and surjective.

2. The function f : R∗ −→ R such that f(x) = 1
x is not bijective, since it is not surjective.

3. The function f : R −→ R+ such that f(x) = x2 is not bijective, since it is not injective.
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Theorem 2.2.21. Let f : E −→ F be a function. The following assertions are equivalents

1. f is bijective.

2. For all b ∈ F , the equation f(x) = b has a unique solution x.

Proof : A function is bijective if and only if the equation y = f(x) has at least (see Theorem

2.2.15) and at most (see Theorem 2.2.18) one solution, hence a unique solution.

2.2.6.1 Reciprocal application of a bijective function

Definition 2.2.22. Let f : E −→ F be a bijective function. The reciprocal application of f ,

denoted by f−1, is defined as f−1 : F −→ E, where f−1(y) = x, and x is the antecedent of y by

f (i.e., f(x) = y).

Example 2.2.23. The bijection f defined from R to R by f(x) = 3x+1, its reciprocal application

is defined from R to R by f−1(x) = x−1
3 .

Theorem 2.2.24. Let f : E −→ F be a bijective function. Then

(a) The reciprocal application f−1 is bijective and (f−1)−1 = f .

(b) f ◦ f−1 = IdF and f−1 ◦ f = IdE.

Proof : (a) For each x ∈ E, the equation f−1(y) = x has a unique solution y = f(x) and it is

unique because another solution y′ can only be f(x). Then, according to Theorem 2.2.21,

f−1 is bijective. Moreover, (f−1)−1 : E −→ F and (f−1)−1(x) = y since f−1(y) = x.

Therefore, (f−1)−1 = f .

(b) We have f : E −→ F and f−1 : F −→ E, then f ◦ f−1 : F −→ F . Also, f ◦ f−1(y) =

f(x) = y = IdF (y), hence the equality f ◦ f−1 = IdF . Similarly, it can be shown that

f−1 ◦ f = IdE .

Theorem 2.2.25. (Bijection Theorem) Let I be an interval in R. Let f : I → R. We assume

that f is continuous and strictly monotonic on I. Then

� f establishes a bijection from I to the interval J = f(I).

� f−1 is strictly monotonic on J , with the same direction of variation as f , and f−1 : J → I

with f−1(y) = x ( x is the antecedent of y by f).
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2.3 Some exercises with solutions

Exercise 2.3.1. Let E = {a, b, c, d} be a set, can we write the following

(1) a ∈ E, (2) a ⊂ E, (3) {a} ⊂ E, (4) ∅ ∈ E, (5) ∅ ⊂ E.

Give the power set of E.

Solution:

Let E = {a, b, c, d} be a set, can we write the following

(1) a ∈ E true, since a is an element in E.

(2) a ⊂ E has no sense, since a is not a set.

(3) {a} ⊂ E true, since {a} is a subset of E.

(4) ∅ ∈ E false, since the EmptySet is not an element of E.

(5) ∅ ⊂ E true, the EmptySet is included in all the sets.

The power set of E is

P(E) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c.d},

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, E} .

Exercise 2.3.2. Let A =]−∞, 2[, B =]− 2, 6[, and C =]− 4,+∞[ three sets of R.
Determine A ∩B, A ∪B, B ∩ C, Ac, Ac ∩Bc, A\B.

Solution:

Let A =]−∞, 2[, B =]− 2, 6[, and C =]− 4,+∞[ three sets of R.
Determine A ∩B, A ∪B, B ∩ C, Ac, Ac ∩Bc, A\B and (B ∪ C)c.

� A ∩B =]− 2, 2[.

� A ∪B =]−∞, 6[.

� B ∩ C =]− 2, 6[

� Ac = [2,+∞[.

� Ac ∩Bc = [6,+∞[.

� A\B =]−∞,−2].

� (B ∪ C)c =]−∞,−4].
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Exercise 2.3.3. Let A and B be two non empty sets, using different approaches, prove that

(A\B) ∪ (A ∩B) = A.

Solution :

Proof using element-chasing:

Let x ∈ (A \B) ∪ (A ∩B). Then:

x ∈ A \B or x ∈ A ∩B.

In both cases, x ∈ A, so (A \B) ∪ (A ∩B) ⊆ A.

Conversely, if x ∈ A, then either x /∈ B (so x ∈ A \ B) or x ∈ B (so x ∈ A ∩ B). Thus,

x ∈ (A \B) ∪ (A ∩B), proving A ⊆ (A \B) ∪ (A ∩B).

Therefore, (A \B) ∪ (A ∩B) = A.

Proof using set identities:

A \B = {x ∈ A | x /∈ B}, A ∩B = {x ∈ A | x ∈ B}.

Taking the union:

(A \B) ∪ (A ∩B) = {x ∈ A | x /∈ B} ∪ {x ∈ A | x ∈ B} = {x ∈ A}.

Thus, (A \B) ∪ (A ∩B) = A.

Exercise 2.3.4. Let f : R −→ R defined by f(x) = 2x
1+x2

1. Is f injective? surjective?

2. Prove that f(R) = [−1, 1].

3. Prove that the restriction g : [−1, 1] −→ [−1, 1] such that g(x) = f(x) is a bijection.

4. Prove the previous results using the study of variations of f .

Solution :

Let f : R −→ R defined by f(x) = 2x
1+x2

1. f is not injective because f(2) = f(12) = 4
5 . f is not surjective, because y = 2 has no

pre-image: indeed, the equation f(x) = 2 becomes 2x = 2(1 + x2), which simplifies to

x2 − x+ 1 = 0, and this has no solutions in R.

2. The equation f(x) = y is equivalent to the equation yx2 − 2x + y = 0. This equation

has real solutions if and only if ∆ = 4 − 4y2 ≥ 0, so there are solutions if and only if

−1 ≤ y ≤ 1. Thus, we have f(R) = [−1, 1].



30 Some exercises with solutions

3. Let y ∈ (−1, 1)/{0}. The possible solutions of the equation g(x) = y are x =
1−
√

1−y2

y and

x =
1+
√

1−y2

y . The second solution does not belongs to [−1, 1] (solution is strictly greater

than 1 if y > 0, and strictly less than -1 if y < 0). On the other hand, x =
1−
√

1−y2

y =
y

1+
√

1−y2
∈ [−1, 1]. Since

1 ≤ 1 +
√

1− y2 ⇒ 0 <
1

1 +
√
1− y2

≤ 1,

and, since −1 < y < 1, then

−1 ≤ −1

1 +
√
1− y2

≤ x ≤ 1

1 +
√

1− y2
≤ 1.

In other way, if y = 1, the equation g(x) = 1 has the unique solution x = 1, while if

y = −1, the equation g(x) = −1 has the unique solution x = −1. Finally, if y = 0, the

equation g(x) = 0 has the unique solution x = 0. In all cases, we have proven that for all

y in [−1, 1], the equation g(x) = y has a unique solution with x in [−1, 1]. We have indeed

proven that g is a bijection.

4. Variations of f :

f ′(x) =
2− 2x2

(1 + x2)2

x −∞ −1 1 +∞
Sign of f ′(x) – + –

Variations of f(x) 0↘ −1↗ 1↘0

On the interval [−1, 1], f ′(x) ≥ 0, then f is increasing and continuous with f(−1) = −1

and f(1) = 1. Hence, via mean value theorem, each y ∈ [−1, 1] has a unique antecedent

x ∈ [−1, 1]. So, the restriction of f which is called g is a bijection.

An analysis method, using the continuity and strict monotonicity of g, would be easier!

Exercise 2.3.5. Determine f(I), then verify that f realise a bijection from I to J = f(I), then

precise f−1, where

f(x) =
√
2x+ 3− 2, I =]

−3

2
,+∞[

Solution :

f(x) =
√
2x+ 3-2, I =

]−3
2 ,+∞

[
� For x ∈

]−3
2 ,+∞

[
, we have x > −3

2 , which implies that f(x) > −1. Hence

f(I) =]− 2,+∞[.
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Since the function f is continuous on the interval
]−3

2 ,+∞
[
and strictly increasing

(because f ′(x) = 1√
2x+3

> 0), then f realizes a bijection from I to J = f(I).

� Precise f−1.

Let y ∈ J = [−2,+∞[ and x ∈
]−3

2 ,+∞
[
such that y = f(x)

y = f(x) ⇔ y =
√
2x+ 3− 2

⇔ (y + 2)2 = 2x+ 1

⇔ x =
1

2
(y + 2)2 − 3

2
∈]−3

2
,+∞[.

So, the function f−1 is defined by

f−1 :]− 2,+∞[−→
]
−3

2
,+∞

[
x 7−→ 1

2
(x+ 2)2 − 3

2
.

Exercise 2.3.6. Let x ∈ R+, f(x) =
x

x+1 , compute f ◦ f ◦ f ◦ ... ◦ f (n times) in term of n ∈ N∗

and x ∈ R+.

Solution :

Given f(x) = x
x+1 , we want to compute fn(x).

Let f1(x) = f(x) = x
x+1 . For n = 2:

f2(x) = f(f(x)) = f

(
x

x+ 1

)
=

x
x+1
x

x+1 + 1
=

x

2x+ 1
.

For n = 3:

f3(x) = f
(
f2(x)

)
= f

(
x

2x+ 1

)
=

x
2x+1
x

2x+1 + 1
=

x

3x+ 1
.

By induction:

fn(x) =
x

nx+ 1
, ∀n ∈ N∗.

Now, we prove this last using recurrence:

For n = 1, it’s evident.

Suppose the formula is true for n, and prove that it remains true for n+ 1.

fn+1(x) = f (fn(x)) = f

(
x

nx+ 1

)
=

x
nx+1

1 + x
nx+1

=
x

(n+ 1)x+ 1
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Exercise 2.3.7. Let f and g be applications from N to N defined by f(x) = 2x and

g(x) =

{
x
2 , if x is even,

0, if x is odd.

Determine f ◦ g and g ◦ f . The functions f and g are one to one? onto? bijections?

Solution :

Given functions:

f(x) = 2x, g(x) =


x
2 , if x is even,

0, if x is odd.

1. Compute f ◦ g(x):

f(g(x)) =

f
(
x
2

)
= x, if x is even,

f(0) = 0, if x is odd.

2. Compute g ◦ f(x):

g(f(x)) = g(2x) =
2x

2
= x, ∀x ∈ N.

3. Injectivity and surjectivity:

� f(x) = 2x is injective (let x, y ∈ N, f(x) = f(y) implies x = y). However, f is not

surjective (∃y ∈ N,∀x ∈ N, f(x) ̸= y), consider y = 1.

� g(x) is not injective (e.g., g(1) = g(3) = 0) and not surjective (e.g., 3 /∈ Im(g)).

Exercise 2.3.8. Let

f :[1,+∞[−→ [1,+∞[

x 7−→ eln
2(x).

Prove that f is a bijection, and determine its reciprocal application.

Solution :

Given f(x) = e(lnx)2 .

Injectivity:

Let x1, x2 ∈ [1,+∞[, suppose f(x1) = f(x2). Then:

e(lnx1)2 = e(lnx2)2 =⇒ (lnx1)
2 = (lnx2)

2.
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Since x1, x2 ∈ [1,+∞[, then lnx1 and lnx2 are positif. Hence x1 = x2. Thus, f is injective.

Surjectivity:

Let y ∈ [1,+∞[. Solve y = e(lnx)2 :

ln y = (lnx)2 =⇒ lnx = ±
√

ln y.

Since x ∈ [1,+∞[, only lnx =
√
ln y is valid, so f is surjective.

Inverse:

For y ∈ [1,+∞[,

f−1(y) = e
√
ln y.



Chapter 3

Relations

This chapter introduces the fundamental concept of relations, exploring how elements in

sets relate to one another. We’ll focus on two types of relations: equivalence relations and order

relations.

Equivalence relations provide insights into the concept of equality and equivalence classes,

allowing us to group elements based on shared properties. Order relations, on the other hand,

establish hierarchies among elements, defining relationships like partial and total orders.

3.1 Generalities of relations

Definition 3.1.1. A relation from a set A to a set B is any correspondence R that links elements

of A to elements of B in a certain way.

1. We call A the domain and B the codomain of the relation R.

2. If x is linked to y by relation R, we say that x is in relation R with y, and we write xRy

or R(x, y). Otherwise, we write x ̸ Ry or ̸ R(x, y).

3. A relation from A to A is called a relation on A.

Examples 3.1.2. 1. Let A be the set of university professors in Usto M-B, and B the set of

students in Usto M-B university. We can determine a relation R from A to B by defining

that (x, y) ∈ A×B satisfies xRy if and only if x teaches y.

2. Let A = B = Z. We can determine a relation R on Z by defining that (x, y) ∈ Z × Z
satisfies R(x, y) if and only if x− y is even. We have, for example, 1R5 but 12 ̸ R3.

Definition 3.1.3. (Graph of a relation) The graph of R (denoted GR) is the set defined by

GR = {(x, y) ∈ A×B | xRy}.

34
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For example, considering the relation R from the previous example, we have (1, 7) ∈ GR

and (18, 5) /∈ GR.

Remark 3.1.4. Given two relations R = (A,B,GR) and R′ = (A′, B′, GR′), the statement

”the relations R and R′ are equal” means that A = A′, B = B′, and GR = GR′ same source,

same target, and same graph.

3.2 Representation of a binary relation

We are once again interested in binary relations on two given sets A and B.

1. Set representation: Simply list the pairs satisfying the relation.

2. Representation using a sagittal diagram: A diagram with two curves for arbitrary A and

B (one curve for the source A and the other for the target B). When A = B, you can

either keep the two-curve representation or bring everything together in a single curve

representing A. This latter view is often very instructive.

Let A and B two sets, where A has elements {1, 2, 3}, and B has elements {a, b}. Below

is an illustrative diagram that represent the relation R = {(1, a), (2, a), (3, b)}

1

2

3

a

b

3. Representation using a formula: For example, the relation R on R such that xRy if and

only if x2 = y2.

3.3 Properties of a Binary Relation on a Set

We now focus on a binary relation where the source coincides with the target. Thus, we have

a relation on a given set A. Here, we explore the main properties that such a binary relation

may or may not possess.

Definition 3.3.1. Let R be a (binary) relation on a set A. We say that R is:
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1. Reflexive, for every a ∈ A, we have aRa.

2. Symmetric, for every pair (a, b) ∈ A2, if aRb, then bRa.

3. Transitive, for every triplet of elements a, b, c ∈ A, if (aRb and bRc), then (aRc).

4. Antisymmetric, for every (a, b) ∈ A2, if (aRb and bRa), then (a = b).

Examples 3.3.2. 1. Let the relation R be defined on Z as follows: xRy ⇔ x divides y.

(a) For any x ∈ Z, we have x divides x. So, for all x ∈ Z, xRx holds, which means R is

reflexive.

(b) For x, y ∈ Z, xRy implies (x divides y) ⇏ (y divides x). For example, 1 divides 4,

but 4 does not divide 1, hence R is not symmetric.

(c) Let x, y ∈ Z, we have (xRy) and (yRx) ⇒ ((x divides y) and (y divides x)) ⇏
x = y, for example, (1 divides −1) and (−1 divides 1), but −1 ̸= 1, hence R is not

antisymmetric.

(d) For x, y, z ∈ Z, if (xRy) and (yRz) ⇒ ((x divides y) and (y divides z)) ⇒ (x divides

z), then xRz. Thus, R is transitive.

2. Let A = B = Z, and R = (a, b) ∈ Z2, 2|(a− b). Then R is reflexive, symmetric, transitive,

but not antisymmetric.

3. Given the set U , the inclusion relation, which relates subsets of U as follows (X ⊆ Y ), is

reflexive, transitive, and antisymmetric, but not symmetric.

Remark 3.3.3. Symmetric and antisymmetric relations are fundamentally different properties,

but it is possible for a relation to satisfy both simultaneously. For instance, the identity relation

R = {(x, x), x ∈ A} on any set A, is an example of a relation that is both symmetric and

antisymmetric.

3.4 Equivalence Relation

Definition 3.4.1. Let R be a relation on a set A.

1. R is called an equivalence relation if R is reflexive, symmetric, and transitive.

2. If R is an equivalence relation, then

(a) For each a ∈ A, the set ȧ = {x ∈ A|xRa} is called the equivalence class of a modulo

R.
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(b) The set A|R = {ȧ|a ∈ A} is called the quotient set of A by R.

Examples 3.4.2. 1. The relation R given over R by the following formula xRy if and only

if x2 = y2 is an equivalence relation, and 0̇ = {0}, and for a ̸= 0, ȧ = {a,−a}.
R|R = {{0}, {a,−a}, a > 0}.

2. Let Rn be a relation of congruence modulo n defined on Z by xRny if and only if n divides

y − x, is indeed an equivalence relation.

For this relation, we have

ȧ = {x ∈ Z/n divides x− a}

= {x ∈ Z/x = nq + a, q ∈ Z}

noted nZ+ a.

In this case Z|Rn
= {nZ+ a, a ∈ Z} which is identified by Z|nZ.

Remark 3.4.3. The class ȧ is also denoted as ā, [a], and Cl(a).

If x is in an equivalence relation with y, we say that x and y are equivalent.

Theorem 3.4.4. Let R be an equivalence relation on a non-empty set A, then

1. Every element of A is in an equivalence class. That is, A = ∪ȧ, where a ∈ A.

2. Two elements are equivalent if and only if they belong to the same class. That is, for all

a, x ∈ A, aRx if and only if ȧ = ẋ.

3. Any equivalence classes are disjoint or coincide. That is, for all a, x ∈ A, ȧ ∩ ẋ = ∅ or

ȧ = ẋ.

4. The equivalence classes form a partition of A. That is, every element in A belongs to

exactly one equivalence class, and the union of all equivalence classes covers A entirely.

Proof :

1. Every element a ∈ A verifies aRa, which means a ∈ ȧ.

2. Suppose that aRx and let y ∈ ȧ, then yRa. Thus, by transitivity yRx, so y ∈ ẋ. Then

ȧ ⊂ ẋ. Similarly, ẋ ⊂ ȧ.

Inversely, if ȧ = ẋ, we take an element y ∈ ȧ = ẋ, satisfies aRy and yRx. Thus, by

transitivity, we get aRx.
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3. Suppose the opposite, means ȧ ∩ ẋ ̸= ∅ and ȧ ̸= ẋ. Thus, ∃y ∈ A satisfies aRy and

yRx.Thus, by transitivity, we get aRx and using (2), we conclude that ȧ = ẋ, which is a

contradiction with ȧ ̸= ẋ.

4. Due to (1), we have ȧ ̸= ∅ and A = ∪ȧ, where a ∈ A, and using (3) ȧ ∩ ḃ = ∅ if ȧ ̸= ḃ.

Consequently, the equivalence classes form a partition of A.

Example 3.4.5. If n = 3, we have Z|3Z = {0̇, 1̇, 3̇} = {3̇, 1̇, 2̇} = {−̇3, 4̇, 5̇}.

3.5 Order Relation

Definition 3.5.1. Let R be a relation on a set A.

R is called an order relation if R is reflexive, antisymmetric, and transitive.

(a) If R is an order relation, we often write ≤R instead of R.

(b) ≤R is called a total order relation if

∀x, y ∈ A, ((x ≤R y) ∨ (y ≤R x)).

(c) ≤R is called a partial order relation if

∃x, y ∈ A, ((x ̸≤R y) ∧ (y ̸≤R x)).

Remark 3.5.2. Two elements x and y are said to be comparable by ≤R if x ≤R y or y ≤R x.

Examples 3.5.3. 1. The inclusion relation R on P(N) is a partial order. (For X, Y , and

Z in P(N)

� Reflexivity X ⊆ X

� Antisymmetry X ⊂ Y and Y ⊆ X implies X = Y .

� Transitivity X ⊆ Y and Y ⊆ Z implies X ⊆ Z. Moreover, the subsets {1, 2} and

{1, 3} are incomparable.

2. The way words are arranged in a dictionary defines a total order relation called lexico-

graphic order, denoted by ≤lex. For example, algebra ≤lex analysis.

Definition 3.5.4. (Special Elements)Let R be an order relation on a set E, and let A be a

subset of E, then
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1. An element m ∈ E is called a minimum of A if

(a) m ∈ A.

(b) for every x ∈ A, we have m ≤R x. (We also say that m is a smallest (least) element

of A.)

2. An element M ∈ E is called a maximum of A if

(a) M ∈ A.

(b) for every x ∈ A, we have x ≤R M . (We also say that M is a greatest element of A.)

3. An extremum is an element that is either a minimum or a maximum.

4. An element u in the set E is called a lower bound of A if for every x ∈ A, u ≤R x. (It is

also said that A is bounded below by u.)

5. An element U in the set E is called an upper bound of A if for every x ∈ A, x ≤R U . (It

is also said that A is bounded above by U .)

6. The set A is said to be bounded below in E if A has a lower bound in E; A is said to be

bounded above in E if A has an upper bound in E; and A is said to be bounded in E if A

is both bounded below and above.

7. An element v in the set E is called a infimum of A if

(a) v is a lower bound of A,

(b) for every lower bound v′ of A, we have v′ ≤R v. Notation: v = inf(A).

8. An element V in the set E is called a supremum of A if

(a) V is an upper bound of A,

(b) for every upper bound ′V of A, we have V ≤R V ′. Notation: V = sup(A).

Examples 3.5.5. For the usual order ≤ on the set of real numbers R, let B =]− 4, 0[∪[12 ,+∞[.

We have the following

There is no min(B) (4 is a good candidate, but 4 is not in B).

There is no max(B) (There are no candidates for the maximum element in B).

The set of lower bounds of B is ]−∞,−4], so inf(B) = −4.

There are no upper bounds of B, so sup(B) does not exist.
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3.6 Some Exercises with solutions

Exercise 3.6.1. Are the following relations, reflexive? symmetric? antisymmetric? transitive?

(a) E = Z, and xRy ⇔ x = −y;

(b) E = R, and xRy ⇔ cos2(x) + sin2(y) = 1;

Solution :

(a) E = Z, and xRy ⇔ x = −y;

The relation is not reflexive because 1 is not in a relation with itself. In fact, 1 ̸ R1.

The relation is symmetric because x = −y then, y = −x. It is not antisymmetric because

1R−1 and −1R1, while 1 ̸= −1. It is not transitive either. In fact, we have 1R−1, −1R1,

and 1 ̸ R1.

(b) E = R, and xRy ⇔ cos2(x) + sin2(x) = 1;

From the formula cos2x+ sin2x = 1, we can deduce that the relation is reflexive. It is also

symmetric, since, if xRy, i.e., cos2x+ sin2y = 1, then, we have

sin2x+ cos2x+ cos2y + sin2y = (cos2x+ sin2y) + (cos2y + sin2x) = 1 + (cos2y + sin2x),

and on the other hand, we have

sin2x+ cos2x+ cos2y + sin2y = 1 + 1 = 2,

which implies

cos2y + sin2x = 1,

and therefore, the relation is symmetric. It is not antisymmetric because 0R2π and 2πR0

while 0 ̸= 2π. It is transitive. If xRy and yRz, we have cos2x + sin2y = 1 and cos2y +

sin2z = 1 which implies cos2x+ (sin2y+ cos2y) + sin2z = 2 and thus, cos2x+ sin2z = 1.

Exercise 3.6.2. Let R a relation defined on Z by

xRy ⇔ x2 − y2 = x− y.

1. Prove that R is an equivalence relation.

2. Determine the equivalence class of any element x ∈ R. Precise the equivalence class of 1.

Solution :

Let R a relation defined on Z by

xRy ⇔ x2 − y2 = x− y.
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1. It suffices to notice that xRy ⇔ x2 − x = y2 − y ⇔ f(x) = f(y), with f : x 7−→ x2 − x.

It is then easy to verify by applying the definition that R is an equivalence relation,

R is reflexive, since ∀x ∈ R, f(x) = f(x). R is symmetric, since ∀x, y ∈ R, f(x) = f(y)

implies that f(y) = f(x). And R is transitive, since ∀x, y, z ∈ R, f(x) = f(y) and

f(y) = f(z), then f(x) = f(z).

2. Let x ∈ R. We are looking for elements y in R such that xRy. Therefore, we need to solve

the equation in y

x2 − y2 = x− y.

It factors as

(x− y)(x+ y − 1) = 0

Its solutions are y = x and y = 1−x. The class of x is thus equal to {x, 1−x}. It consists
of two elements unless x = 1

2 . In that case, it equals
{
1
2

}
. Hence, the equivalence class of

1 is {0, 1}.

Exercise 3.6.3. Let R a relation defined on R by

xRy ⇔ x3 − y3 ≥ 0.

Prove that R is an order relation. Is the order total?

Solution :

Let R a relation defined on R by

xRy ⇔ x3 − y3 ≥ 0.

R is an order relation

1. The relation is reflexive: for any x ∈ R, x3 − x3 ≥ 0, and therefore xRx.

2. The relation is antisymmetric: let x, y ∈ R such that xRy and xRy, means{
x3 − y3 ≥ 0

y3 − x3 ≥ 0
⇒ x3 − y3 = 0.

Which means x = y.

3. The relation is transitive: let x, y, z ∈ R such that xRy and yRz, means{
x3 − y3 ≥ 0

y3 − z3 ≥ 0
⇒ x3 − z3 ≥ 0.

Which means xRz.
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The order is total, since ∀x, y ∈ R, either x3 − y3 ≥ 0 or y3 − x3 ≥ 0.

Exercise 3.6.4. Let R be a relation defined on Z× N∗ by

(n,m)R(n′,m′) ⇔ nm′ = n′m.

1. Prove that R is an equivalence relation.

2. Let (p, q) ∈ Z× N∗, with p ∧ q = 1, write the equivalence class of (p, q).

Solution :

Let R be a relation on Z× N∗ defined by

(n,m)R(n′,m′) ⇐⇒ nm′ = n′m.

1. R is an equivalence relation:

� Reflexivity: For (n,m) ∈ Z× N∗,

nm = nm,

so (n,m)R(n,m). Thus, R is reflexive.

� Symmetry: If (n,m)R(n′,m′), then nm′ = n′m. Switching sides, n′m = nm′, so

(n′,m′)R(n,m). Thus, R is symmetric.

� Transitivity: If (n,m)R(n′,m′) and (n′,m′)R(n′′,m′′), then

nm′ = n′m and n′m′′ = n′′m′.

Multiplying the 1st equation by m”, nm′m′′ = n′′m′m, so nm′′ = n′′m. Thus,

(n,m)R(n′′,m′′), and R is transitive.

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

2. Equivalence class of (p, q): For (p, q) ∈ Z× N∗, the equivalence class is:

cl(p, q) = {(n,m) ∈ Z× N∗ | nq = pm}.

Exercise 3.6.5. Let E, F be two sets, and f : E −→ F be an application. We define the

relation R on E, such that for all x, x′ ∈ E,

xRx′ ⇔ f(x) = f(x′).

1. Prove that R is an equivalence relation.
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2. Write the equivalence class of an element x ∈ E.

Solution :

Let E, F be sets, and let f : E → F . Define R on E by

xRx′ ⇐⇒ f(x) = f(x′).

1. Prove that R is an equivalence relation:

� Reflexivity: For all x ∈ E,

f(x) = f(x),

so xRx. Thus, R is reflexive.

� Symmetry: If xRx′, then f(x) = f(x′). By symmetry of equality, f(x′) = f(x), so

x′Rx. Thus, R is symmetric.

� Transitivity: If xRx′ and x′Rx′′, then f(x) = f(x′) and f(x′) = f(x′′). By transi-

tivity of equality, f(x) = f(x′′), so xRx′′. Thus, R is transitive.

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

2. Equivalence class of x ∈ E: The equivalence class of x ∈ E is:

ẋ = {x′ ∈ E | f(x′) = f(x)} = f−1{f(x)}.

Exercise 3.6.6. Prove that the following binary relation R defined on ]1,+∞[ by

xRy ⇔ x

1 + x2
≥ y

1 + y2

is a total order relation.

Solution :

Let R be defined on ]1,+∞[ by

xRy ⇐⇒ x

1 + x2
≥ y

1 + y2
.

Prove that R is a total order relation:

� Reflexivity: For all x ∈]1,+∞[,

x

1 + x2
=

x

1 + x2
.

Thus, R is reflexive.
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� Antisymmetry: If xRy and yRx, then

x

1 + x2
=

y

1 + y2
.

This implies x = y. Thus, R is antisymmetric.

� Transitivity: If xRy and yRz, then

x

1 + x2
≥ y

1 + y2
and

y

1 + y2
≥ z

1 + z2
.

Combining these, x
1+x2 ≥ z

1+z2
. Thus, R is transitive.

� Totality: For all x, y ∈]1,+∞[,

x

1 + x2
≥ y

1 + y2
or

y

1 + y2
≥ x

1 + x2
.

Thus, R is total order relation.
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Algebraic structures

This chapter serves as a gateway to understanding abstract algebraic concepts in the study of

linear algebra. We’ll explore fundamental algebraic structures such as groups, rings, and fields.

Groups provide a framework for studying symmetry and transformations, while rings and

fields extend these concepts, encompassing properties related to addition and multiplication.

4.1 Binary operations

Definition 4.1.1. A binary operation (or Internal composition laws) on a non-empty set E is

an application ∗ from E × E to E. For any elements x and y in E, the result of the operation

∗ applied to (x, y) is denoted by x ∗ y, x ∗ y is an element of E.

Examples 4.1.2. 1. Ordinary addition + is an internal composition law on N, Z, Q, R, and
C.
Ordinary multiplication × is an internal composition law on N, Z, Q, R, and C.
Subtraction is an internal composition law on Z, Q, R, and C, but not on N.

2. The composition ◦ is an internal composition law on set A(E), the set of applications from

E to E. If f : E −→ E and g : E −→ E are two applications, then f ◦ g : E −→ E is also

an application.

3. The intersection ∩ is an internal composition law on set P(E), the set of subsets of E.

Definition 4.1.3. A non-empty set E equipped with one or more binary operations is called an

algebraic structure. If the operations are denoted as ∗1, ∗2, ..., ∗n, then the algebraic structure is

noted as (E, ∗1, ∗2, ..., ∗n).

Example 4.1.4. (N,+), (Z,+,−), (R,+,×), (A(E,E), ◦), and (P(E),∩) are algebraic struc-

tures.

45
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Definition 4.1.5. Let ∗ be an binary operation on a non-empty set E. Then

1. We say that the law ∗ is associative if, for all x, y, z in E, we have (x ∗ y) ∗ z = x ∗ (y ∗ z).

2. An element e of E is called the neutral element (or unit element) of ∗, if for every x in

E, we have e ∗ x = x ∗ e = x.

3. If e is the neutral element of ∗, we say that an element x in E is invertible (or symmetriz-

able) if there exists an element y in E such that x ∗ y = y ∗ x = e, and y is called the

inverse (or symmetrical) of x and is denoted as x−1.

4. We say that the law ∗ is commutative if, for all x, y in E, we have x ∗ y = y ∗ x.

Remark 4.1.6. If the law ∗ is associative, parentheses can be omitted, and we can write x∗y ∗z
instead of (x ∗ y) ∗ z and x ∗ (y ∗ z).

Examples 4.1.7. 1. The usual addition + on N, Z, Q, R, and C is an associative and

commutative law, and it has 0 as the neutral element.

In Z, Q, R, and C, every element x has its symmetrical (inverse) x−1. In N, the only

element with a symmetrical property for the usual addition is 0.

The usual multiplication × on N, Z, Q, R, and C is an associative and commutative law,

with 1 as the identity element.

In Q∗, R∗ and C∗, every non-zero element x has its inverse (symmetrical) 1
x . The element

0 does not have an inverse for the usual multiplication ×.

In Z, the only invertible elements for the usual multiplication are ±1.

2. The composition ◦ on A(E,E) is an associative law, with the identity function IdE as the

neutral element. The only invertible elements are the bijective functions. ((f ◦ g) ◦ h =

f ◦ (g ◦ h), f ◦ IdE = f = IdE ◦ f , where IdE is the identity function and f has a

reciprocal function f−1 as its inverse for the composition, as f ◦ f−1 = IdE = f−1 ◦ f).

The composition, in general, is not commutative.

Theorem 4.1.8. Let E be a set with an internal composition law ∗. Then

1. The neutral element e, if it exists, is unique.

2. If ∗ is associative and there exists a neutral element e, then the inverse element x−1 of an

element x (if it exists) is unique. Additionally, if y also has an inverse, then (x ∗ y)−1 =

y−1 ∗ x−1.
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Proof : Let’s assume e′ is another neutral element of ∗. Then, we have e′ ∗ e = e ∗ e′ = e, and

since e is also a neutral element, we get e′ ∗ e = e ∗ e′ = e′. Hence, e′ = e, and the neutral

element is unique.

Let’s assume x′ is another inverse of x. Then, we have x ∗ x′ = x′ ∗ x = e, and consequently,

x−1 = (x′ ∗ x) ∗ x−1 = x′ ∗ (x ∗ x−1) = x′. So, the inverse is unique

We have x ∗ x−1 = e = x−1 ∗ x, since the inverse is unique, then x is the inverse of x−1. Which

means (x−1)−1 = x.

We also have (y−1∗x−1)∗(x∗y) = y−1∗x−1∗x∗y = e and (x∗y)∗(y−1∗x−1) = x∗y∗y−1∗x−1 = e,

since the inverse is unique. Then, y−1 ∗ x−1 is the inverse of x ∗ y. Which means (x ∗ y)−1 =

y−1 ∗ x−1.

4.2 Groups

4.2.1 Definitions

Definition 4.2.1. Let (G, ∗) be a structured set. We say that (G, ∗) is a group if

(a) the law ∗ is associative on G,

(b) there exists a neutral element for the law ∗ in G,

(c) every element of G is symmetrizable for the law ∗.

We also say that the set G has a group structure for the law ∗.
We say that the group (G, ∗) is commutative (or abelian) if the law ∗ is commutative on G.

Example 4.2.2. We provide examples of groups

1. Z, Q, R and C equipped with addition.

2. Q∗, R∗ and C∗, equipped with multiplication.

4.2.2 Subgroups

Definition 4.2.3. (Subgroups) A subgroup of a group (G, ∗) is a non-empty subset H of G such

that

1. ∗ induces an internal composition law on H.

2. Equipped with this law, H is a group. We denote it as H < G.

Proposition 4.2.4. The set H ⊆ G is a subgroup of a group (G, ∗) if and only if
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1. H is non-empty.

2. For all (x, y) ∈ H2, x ∗ y ∈ H.

3. For all x ∈ H, x−1 ∈ H.

Proposition 4.2.5. The set H is a subgroup of a group (G, ∗) if and only if

1. H is non-empty.

2. For all (x, y) ∈ H2, x ∗ y−1 ∈ H.

Example 4.2.6. � Let (G, ∗) be a group. Then G and {eG} are subgroups of G.

� (Z,+) is a subgroup of (R,+).

Proposition 4.2.7. The arbitrary intersection of subgroups of a group (G, ∗) is a subgroup of

(G, ∗).

Proof : Let (Hi)i∈I be a family of subgroups of a group G. Let K =
⋂

i∈I Hi be the intersection

of all the Hi’s. The set K is non-empty since it contains the identity element e, which belongs to

each of the subgroups Hi. Let x and y be two elements of K. For all i ∈ I, we have x∗y−1 ∈ Hi,

since Hi is a subgroup. Thus, x ∗ y−1 ∈ K, which proves that K is a subgroup of G.

Remark 4.2.8. The arbitrary union of subgroups of a group (G, ∗) is not necessarily a subgroup

of (G, ∗).

Example 4.2.9. Let ∗ be the internal composition law defined on R2 as follows. For any

(x1, y1), (x2, y2) ∈ R2, (x1, y1) ∗ (x2, y2) = (x1 + x2, y1 + y2). We have that (R2, ∗) is a group.

Also, R × {0} and {0} × R are two subgroups of (R2, ∗). However, R × {0} ∪ {0} × R is not a

subgroup of (R2, ∗).

4.2.3 Examples of groups

4.2.3.1 The group Z/nZ

First, it is clear that if n is a positive integer, the set nZ of integers of the form nk, where

k varies in Z (the set of multiples of n), forms an additive subgroup of (Z,+).

Proposition 4.2.10. Every subgroup of (Z,+) is of the form (nZ,+).

Remark 4.2.11. The congruence relation modulo n, where n ∈ N and denoted by ⇔, is defined

as follows

∀x, y ∈ Z, x ⇔ y[n] ⇔ (x− y) ∈ nZ ⇔ ∃k ∈ N/y = x− nk.
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Read as ”x is congruent to y modulo n,” it defines an equivalence relation in (Z,+).

The quotient set is finite and can be written as

Z/nZ = {0̇, 1̇, 2̇, ...,
˙̂

n− 1}.

For example Z/2Z = {0̇, 1̇}, Z/3Z = {0̇, 1̇, 2̇}, Z/4Z = {0̇, 1̇, 2̇, 3̇}, and Z/6Z = {0̇, 1̇, 2̇, 3̇, 4̇, 5̇}.

� The quotient addition on Z/nZ induced by that of Z is given by

∀x, y ∈ Z/nZ, ẋ+̇ẏ =
˙̂

x+ y.

� The quotient multiplication on Z/nZ induced by that of Z is given by

∀x, y ∈ Z/nZ, ẋ×̇ẏ =
˙̂

x× y.

For example, writing the addition and multiplication tables in the quotient set Z/nZ.

+̇ 0̇ 1̇

0̇ 0̇ 1̇

1̇ 1̇ 0̇

×̇ 0̇ 1̇

0̇ 0̇ 0̇

1̇ 0̇ 1̇

Proposition 4.2.12. The set (Z/nZ,+) forms a commutative group (quotient group of Z by

the congruence relation) with neutral elements 0̇ for addition operation.

4.2.3.2 Permutation Group

Definition 4.2.13. Let E be a set. A permutation of E is a bijection from E to itself. We

denote the set of permutations of E as SE. If E = {1, ..., n}, we simply write Sn. The set SE

equipped with the composition law of applications forms a group with identity e = Id, called the

symmetric group on the set E.

Example 4.2.14. Let’s assume E = {1, 2, 3, 4, 5}, and we denote a permutation σ ∈ S5 as

follows

σ =

(
1 2 3 4 5

2 4 1 5 3

)
Which means σ(1) = 2, σ(2) = 4, etc.

If we consider

σ1 =

(
1 2 3 4 5

3 2 4 5 1

)
and σ2 =

(
1 2 3 4 5

4 1 2 5 3

)

Then, σ1 ◦ σ2(3) = σ1(2) = 2.
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4.2.4 Group homomorphism

Definition 4.2.15. Let (G, ∗) and (H, ⋆) be two groups. An application f from G to H is a

group homomorphism when

∀x, y ∈ G, f(x ∗ y) = f(x) ⋆ f(y).

Moreover,

1. If G = H and ∗ = ⋆, it is called an endomorphism.

2. If f is bijective, it is called an isomorphism.

3. If f is a bijective endomorphism, it is called an automorphism.

Examples 4.2.16. � The application x 7−→ 2x realizes an automorphism of (R,+).

� The application f : R −→ R∗
+ that associates each real number with its exponential is

a group morphism of R under addition, to R∗
+ under multiplication, since f(x + y) =

f(x) · f(y), for all x, y ∈ R.

Proposition 4.2.17. (Some Elementary Properties of Group Homomorphisms) Let f be a ho-

momorphism from (G, ∗) to (H, ⋆)

1. f(eG) = eH .

2. For all x ∈ G, f(x′) = (f(x))′ (where x′ is the symmetric of x in G, and (f(x))′ is the

symmetric of f(x) in H).

3. If f is an isomorphism, then its reciprocal application f−1 is an isomorphism from (H, ⋆)

to (G, ∗).

4. If G′ < G then f(G′) < H.

5. If H ′ < H then f−1(H ′) < G.

Proof :

1. f(eG ∗ eG) = f(eG) then f(eG) ⋆ f(eG) = f(eG), which shows that by composing on the

right with f(eG)
′, that f(eG) = eH .
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2. Let x ∈ G

f(x′) ⋆ f(x) = f(x′ ∗ x) = f(eG) = eH .

On the other hand,

f(x) ⋆ f(x′) = f(x ∗ x′) = f(eG) = eH .

Hence, f(x′) = (f(x))′.

3. Let y1 and y2 be two arbitrary elements of H. Set x1 = f−1(y1), x2 = f−1(y2). Since f is

a group homomorphism, we have f(x1 ∗ x2) = f(x1) ⋆ f(x2), so f(x1 ∗ x2) = y1 ⋆ y2, which

implies x1 ∗ x2 = f−1(y1 ⋆ y2), i.e., f
−1(y1) ∗ f−1(y2) = f−1(y1 ⋆ y2). This proves that f

−1

is a group morphism from H to G, which completes the proof.

4. and 5. Left for the reader.

Definition 4.2.18. Let f be a homomorphism from G to H

1. The kernel of f , denoted Ker(f), is the set of antecedents of eH under f

Ker(f) = {x ∈ G | f(x) = eH}.

2. The image of f , denoted Im(f), is f(G) (the set of images of elements in G under f),

i.e.,

Im(f) = {f(x), x ∈ G}.

Remark 4.2.19. According to the last two points of proposition (5.4.1), the kernel and image

of f are respective subgroups of G and H.

Proposition 4.2.20. Let f be a homomorphism from (G, ∗) to (H, ⋆)

1. f is surjective if and only if Im(f) = H.

2. f is injective if and only if Ker(f) = {eG}.

Proof : (1) is immediate by the definition of onto mapping. To prove (2), first assume that f is

injective. Let x be an element of Ker(f). We have f(x) = eH , and since f(eG) = eH , we deduce

that f(x) = f(eG), which implies x = eG due to the injectivity of f . Thus, Ker(f) = {eG}.
Conversely, suppose that Ker(f) = {eG}, and let’s show that f is injective. Consider x, y ∈ G

such that f(x) = f(y). Then, f(x)⋆(f(y))′ = eH , so f(x∗y′) = eH , which means x∗y′ ∈ Ker(f).

Since Ker(f) = {eG}, we get x ∗ y′ = eG, and consequently, x = y. This demonstrates the

injectivity of f , this completes the proof.
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4.3 Ring Structure

4.3.1 Definitions

Definition 4.3.1. A ring is a set equipped with two binary operations (A, ∗, ⋆) such that

1. (A, ∗) forms a commutative group with the identity denoted as 0A.

2. The operation ⋆ is an associative and distributive binary operation on A with respect to ∗

∀x, y ∈ A, x ⋆ (y ∗ z) = x ⋆ y ∗ x ⋆ z, and (x ∗ y) ⋆ z = x ⋆ z ∗ y ⋆ z.

Example 4.3.2. The sets (Z,+,×), (Q,+,×), (R,+,×), and (C,+,×) are well-known rings.

Definition 4.3.3. (Types of rings)

1. A ring (A, ∗, ⋆) is said Ring with unity if its multiplicative identity exists i.e.,

∃1A ∈ A, 1A ⋆ x = x ⋆ 1A = x, ∀x ∈ A.

2. A ring (A, ∗, ⋆) is said Commutative ring (or abelian ring) if the operation ⋆ is com-

mutative.

Remark 4.3.4. 1. If the operation ⋆ is commutative, the ring is called a commutative or

abelian ring.

2. The set A− {0A} is denoted A∗.

Notations and Conventions. Let (A, ∗, ⋆) be a ring. Let n be a non-zero natural number,

and let x be an element of A.

1. We denote the element nx in A, which is equal to the composition by the first law ∗ of n

terms equal to x. In other words, for all n ∈ N∗ and x ∈ A,

nx = x ∗ x ∗ x ∗ ... ∗ x︸ ︷︷ ︸
n terms

In particular, taking n = 1, we have 1x = x for all x ∈ A.

2. Similarly, we denote the element xn in A, which is equal to the composition by the second

law ⋆ of n terms equal to x. In other words, for all n ∈ N∗ and x ∈ A,

xn = x ⋆ x ⋆ x ⋆ ... ⋆ x︸ ︷︷ ︸
n terms

In particular, taking n = 1, we have: x1 = x for all x ∈ A.
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3. And for n = 0? Let’s denote by 0A the zero element and by 1A the unit element of (A, ∗, ⋆)
(this notation is a bit unfortunate here as it reminds us of the additive notation and the

multiplicative notation that we are trying to avoid). Then, by convention, for all x ∈ A,

0x = 0A and x0 = 1A.

For simplicity, we temporarily omit the notations ⋆ and ∗ defined on A in favor of the notations

additive (+) and multiplicative (×). So, we refer to the ring (A,+,×) instead of (A, ∗, ⋆).

Definition 4.3.5. 1. A commutative ring (A,+,×) is called integral if it is

(a) Different from the zero ring (i.e., if A ̸= {0A}),

(b) ∀a, b ∈ A, (a× b = 0) ⇒ (a = 0 ∨ b = 0).

2. When a product a × b is zero but neither a nor b is zero, we say that a and b are zero

divisors.

Example 4.3.6. � (Z,+,×) of integers is integral, it has no zero divisors.

� The ring Z/6Z of residue classes modulo 6 is not integral since 2̇×̇3̇ = 6̇, so 2̇×̇3̇ = 0̇. The

same applies to Z/4Z.

Definition 4.3.7. Let (A,+,×) be a ring (not necessarily commutative) and 0A be the zero of

the ring. An element a ∈ A is said nilpotent if

∃n ∈ N∗, an = 0A.

Remark 4.3.8. 1. (A,+,×) be a ring, (not necessarily commutative), then it is clear that a

nilpotent element of A is a zero divisor.

2. Every ring has at least a nilpotent element which is 0A.

Proposition 4.3.9. Let (A,+,×) be a ring. The computation rules in rings are as follows

1. ∀x ∈ A, x × 0A = 0A × x = 0A (The element 0A is then called an absorbing element for

the law ×. )

2. ∀x, y ∈ A, (−x)× y = x× (−y) = −(x× y).

3. ∀x ∈ A, (−1A)× x = −x.

4. ∀x, y ∈ A, (−x)× (−y) = x× y.

5. ∀x, y, z ∈ A, x× (y − z) = x× y − x× z and (y − z)× x = y × x− z × x.
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4.3.2 Sub-rings

Definition 4.3.10. Let (A, ∗, ⋆) be a ring. A non-empty subset A1 of A is a sub-ring of A if

the laws ∗ and ⋆ induce binary operations on A1, and equipped with these laws, (A1, ∗, ⋆) is a

ring.

Proposition 4.3.11. A non-empty subset A1 of A is a sub-ring of A if and only if

1. 0A ∈ A1;

2. For all x, y ∈ A1, x ∗ y−1 ∈ A1;

3. ∀x, y ∈ A1, x ⋆ y ∈ A1.

Example 4.3.12. (Z,+,×) is a sub-ring of (Q,+,×), which is a sub-ring of (R,+,×), and that

is a sub-ring of (C,+,×).

4.3.3 Ring Homomorphisms

Definition 4.3.13. Let (A,+A,×A) and (B,+B,×B) be two rings with unites 1A and 1B (re-

spectively). A ring homomorphism from A to B is a function from A to B such that

1. f(1A) = 1B;

2. For all x, y ∈ A, f(x+A y) = f(x) +B f(y), and f(x×A y) = f(x)×B f(y).

4.3.4 Ideals of a Commutative Ring

Let (A,+,×) be a commutative ring

Definition 4.3.14. (Ideal) A subset I of A is an ideal of the ring (A,+,×) if

1. (I,+) is a subgroup of (A,+);

2. For every a ∈ A, we have aI ⊂ I, in other words ∀a ∈ A, ∀x ∈ I: ax ∈ I.

Proposition 4.3.15. A subset I of A is an ideal of the ring (A,+,×) if and only if

1. 0A ∈ I;

2. For all x, y ∈ I, x− y ∈ I.

3. ∀a ∈ A, ∀x ∈ I, a× x ∈ I.

Examples 4.3.16. 1. Every non-trivial ring has at least two ideals: the trivial ideal {0} and

A itself. The ideals of A, distinct from A, are called proper ideals.
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2. Every element x of A defines a principal ideal

< x >= xA = {ax/a ∈ A}.

It is the smallest ideal that contains a, and we say it is generated by a.

3. More generally, if x1, x2, ..., xn belong to A, the smallest ideal containing x1, x2, ..., xn is

< x1, x2, ..., xn >= x1A+ x2A+ ...+ xnA = {a1x1 + ...+ anxn/a1, ..., an ∈ A}.

Indeed, it is immediately verified that I = x1A+ x2A+ ...+ xnA is non-empty and stable

under linear combinations, therefore it is an ideal.

4.4 Field Structure

Definition 4.4.1. A field is a commutative ring in which every non-zero element is invertible.

If, in addition, the second operation × is commutative on K, then we say that the field (K,+,×)

is commutative.

Example 4.4.2. (Q,+,×) and (R,+,×) are commutative fields.

(Z,+,×) is not a field.

4.5 Some exercises with solutions

Exercise 4.5.1. Show that the given laws equip the set G with a group structure and determine

if it’s abelian

x ∗ y =
x+ y

1 + xy
on G =]− 1, 1[.

Solution :

(G, ∗) is a group since,

� ∗ is a binary operation on G, let x, y ∈ G

To prove that, fix y ∈]− 1, 1[ and studying the function defined on ]− 1, 1[ by:

f(t) =
t+ y

1 + ty

this function is derivable on ]− 1, 1[, and

f ′(t) =
1− y2

(1 + ty)2
> 0, on ]− 1, 1[

which means that f is strictly increasing on ]− 1, 1[ and

f(−1) < x ∗ y = f(x) < f(1),

since f(−1) = −1 and f(1) = 1, then x ∗ y ∈]− 1, 1[.
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� ∗ is associative, ∀(x, y, z) ∈ G∗

x ∗ (y ∗ z) = x+ (y ∗ z)
1 + x(y ∗ z)

=
x+ y+z

1+yz

1 + x y+z
1+yz

=
x+ y + z + xyz

1 + xy + xz + yz
.

Similarly,

(x ∗ y) ∗ z =
x+ y + z + xyz

1 + xy + xz + yz
.

� 0 is a neutral element for the operation ∗, since

∀x ∈ G, x ∗ 0 = 0 ∗ x =
x+ 0

1 + x(0)
= x.

� Each element of G has a symmetrical element in G, since

∀x ∈ G, x ∗ y = y ∗ x = 0,

which means
x+ y

1 + xy
= 0.

Hence, y = −x.

Then (G, ∗) is a group. Additionally, it is abelian, since

∀x, y ∈ G, x ∗ y = y ∗ x.

Exercise 4.5.2. In the following cases, determine if H is a subgroup of group G

1. G = (Z,+); H ={even numbers}.

2. G = (R,+); H = [1,+∞[.

Solution :

1. H is a subgroup of G, since 0 ∈ H, and

∀x, y ∈ H, − x ∈ H and x+ y ∈ H.

2. H i a not a subgroup of G, since 0 /∈ H.
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Exercise 4.5.3. Let (G,+) be a commutative group. We denote by End(G) the set of endo-

morphisms of G, on which we define the operation + as follows

∀f, g ∈ End(G), (f + g)(x) = f(x) + g(x), ∀x ∈ G.

Prove that (End(G),+, ◦) forms a ring.

Solution :

We remark that + and ◦ is an internal composition law on End(G), we need to check the

properties:

1. (End(G),+, ◦) is a commutative group, since + is associative, commutative, and the ap-

plication 0G : G → G is an identity element for the operation +, and each element

f ∈ End(G) has an inverse −f : G → G that associates to each element x ∈ G, −f(x).

2. The operation ◦ is associative.

3. The operation ◦ has an identity element, which is the identity application.

4. The operation ◦ is distributive, since ∀f, g, h ∈ End(G) and for all x ∈ G,

((f + g) ◦ h)(x) = (f + g)(h(x))

= f(h(x)) + g(h(x))

= (f ◦ h+ g ◦ h)(x),

and

(f ◦ (g + h))(x) = f((g + h)(x))

= f(g(x) + h(x))

= f(g(x)) + f(h(x))

= (f ◦ g + f ◦ h)(x).

Hence, (End(G),+, ◦) is a ring.

Exercise 4.5.4. If (G, ∗) is a group such that (a ∗ b)2 = a2 ∗ b2, for all (a, b) ∈ G2, prove that

(G, ∗) is an abelian group.

Solution :

For any a, b ∈ G, by the given property:

(a ∗ b) ∗ (a ∗ b) = (a ∗ a) ∗ (b ∗ b).
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Using associativity, expand both sides:

(a ∗ b) ∗ (a ∗ b) = a ∗ (b ∗ a) ∗ b.

Equating with the right-hand side:

a ∗ (b ∗ a) ∗ b = (a ∗ a) ∗ (b ∗ b).

Cancel a and b on both sides (using inverses):

b ∗ a = a ∗ b.

Thus, (G, ∗) is abelian.

Exercise 4.5.5. Determine whether the following maps are ring homomorphisms:

1. f1 : Z −→ Z, with f1(x) = x+ 1.

2. f2 : Z −→ Z, with f2(x) = x2 + 1.

3. f3 : Z/15Z −→ Z/15Z, with f3(x) = 4x.

Solution :

1. f1 : (Z,+,×) → (Z,+,×), with f1(x) = x+ 1:

� Additivity: f1(x+ y) = (x+ y) + 1 ̸= f1(x) + f1(y) = (x+ 1) + (y + 1).

� Multiplicativity: f1(xy) = xy + 1 ̸= f1(x)f1(y) = (x+ 1)(y + 1).

Therefore, f1 is not a ring homomorphism.

2. f2 : (Z,+,×) → (Z,+,×), with f2(x) = x2 + 1:

� Additivity: f2(x+ y) = (x+ y)2 + 1 ̸= f2(x) + f2(y) = (x2 + 1) + (y2 + 1).

� Multiplicativity: f2(xy) = (xy)2 + 1 ̸= f2(x)f2(y) = (x2 + 1)(y2 + 1).

Therefore, f2 is not a ring homomorphism.

3. f3 : (Z/15Z, +̇, ×̇) → (Z/15Z, +̇, ×̇), with f3(x) = 4x:

� Additivity: f3(x+ y) = 4(x+ y) = 4x+ 4y = f3(x) + f3(y).

� Multiplicativity: f3(xy) = 4(xy) and f3(x)f3(y) = (4x)(4y) = xy ̸= f3(xy).

Therefore, f3 is a ring homomorphism.



Chapter 5

Polynomials ring

This chapter is depicted to the field of polynomials, essential tools in various mathematical

computations and applications. We’ll explore the nature of polynomials, their degrees, roots,

and properties within the context of polynomial rings.

5.1 Construction of polynomials ring

A polynomial with coefficients inK (ring) is defined as a finite sequence (a0, ..., an) of elements

from K. We denote this polynomial as
∑
n≥0

anX
n, where X is referred to as the indeterminate.

We denote K[X] as the set of polynomials with coefficients in K.

We define the following operations on K[X]: If P (X) =
∑
n≥0

anX
n and Q(X) =

∑
n≥0

bnX
n (where

the sequences (an) and (bn) are zero from a certain rank), then we have:

(P +Q)(X) =
∑
n≥0

(an + bn)X
n,

and

(PQ)(X) =
∑
n≥0

cnX
n, where cn =

n∑
k=0

akbn−k.

These two operations make K[X] into a ring. Let A and B be in K[X], with B =
N∑

n=0

bnX
n .

Then, the composition of A by B in the polynomial ring K[X] is given as:

B ◦A =

N∑
n=0

bnA
n.
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5.2 Polynomial degree, roots and multiplicity

Polynomial degree

If P =
∑

n≥0 anX
n is not zero, there exists a larger index n ∈ N such that an ̸= 0. This

integer is called the degree of P , denoted deg(P ). The corresponding coefficient is called the

leading coefficient of P . By convention, if P is zero, its degree is −∞. A polynomial with a

leading coefficient equal to 1 is called unitary (monic).

For all non-zero polynomials P,Q ∈ K[X], where K is an integral domain, we have

deg(P +Q) ≤ max(deg(P ), deg(Q)),

deg(PQ) ≤ deg(P ) + deg(Q),

Example 5.2.1. P (x) = 3x2 + 4x − 2 is a degree two polynomial in the ring Z4[x] (where Z4

the quotient group of the integers Z by the subgroup 4Z).
Q(x) = x3 − 2x+ 3 is of a degree three polynomial in the ring R[x].

Example 5.2.2. Consider P (x) = 2x = 1 and Q(x) = 2x, P and Q are of degree 1 polynomials

in the ring Z4[x],

deg(PQ) = deg(2x(2x+ 1)) = deg(2x) = 1, and deg(P ) + deg(Q) = 2.

Polynomial roots, multiplicity

Definition 5.2.3. We say that a is a root of P if P (a) = 0. This is equivalent to saying that

(X − a) divides P .

Remark 5.2.4. In general, the rest of the Eucledian division of a polynomial P (X) by (X − a)

is P (a).

Proposition 5.2.5. If a1, ..., an are distinct roots of P , then (X − a1), ..., (X − an) divide P . A

polynomial of degree n has at most n roots.

Definition 5.2.6. Let P be in K[X], let a ∈ K, and let m ∈ N. We say that a is a root of

multiplicity m if P (a) = P ′(a) = ... = P (m−1)(a) = 0 and P (m)(a) ̸= 0.

Theorem 5.2.7. Let P ∈ K[X], let a ∈ K, and let m ∈ N. The following statements are

equivalent:

1. a is a root of P with multiplicity m.

2. (X − a), ..., (X − a)m divide P , and (X − a)m+1 does not divide P .
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Definition 5.2.8. A polynomial P (x) of degree N is said to be factored if it can be expressed

as follows:

P (x) = aN

N∏
i=1

(x− zi).

5.3 Arithmetics of polynomials

Let K represents the field R or C.
Derivation: ForP =

∑
n≥0

anX
n, P ′ =

∑
n≥1 nanX

n−1, called the derivative polynomial of P . If

deg(P ) ≥ 1, then deg(P ′) = deg(P )− 1.

Leibniz’s Formula: ForP,Q ∈ K[X] and n ∈ N, we have

(PQ)(n) =
n∑

k=0

(
n

k

)
P (k)Q(n−k).

Taylor’s Formula: Let P be in K[X] and a ∈ K. Then

P (X) =
∑
n≥0

P (n)(a)

n!
(X − a)n.

Divisibility, Euclidean Division: Let A,B ∈ K[X] with B nonzero polynomial. We say that

B divides A if there exists Q ∈ K[X] such that A = BQ. We also say that B is a divisor of A

or that A is a multiple of B.

Two nonzero polynomials A and B in K[X] are said to be associated if A divides B and B

divides A. This is equivalent to saying that there exists λ ∈ K∗ such that A = λB.

Theorem 5.3.1. (Euclidean Division of Polynomials). Let A, B be in K[X] with B nonzero

polynomial. There exists a unique pair (Q,R) ∈ K[X] such that

A = BQ+R and deg(R) < deg(B).

Example 5.3.2. The quotient and remainder on dividing f(X) = X5−X2+2 by g(X) = X2+1

in the following case are:

Q(X) = X3 −X − 1 and R(X) = X + 3.

Remark 5.3.3. A polynomial P =
N∑

n=0

anX
n ∈ K[X] defines a polynomial function P̃ : K → K

as P̃ (z) =
N∑

n=0

anz
n. Often, we identify a polynomial with a polynomial function.



62 Arithmetics of polynomials

In terms of polynomial arithmetic, if A and B are non-zero polynomials in K[X], each

common divisor of A and B of maximal degree is called the GCD of A and B.

We say that A and B are coprime if A ∧B = 1.

Theorem 5.3.4. (Bezout theorem) Let A,B ∈ K[X] be non-zero. Then A ∧ B = 1 if and only

if there exist U, V ∈ K[X] such that AU +BV = 1.

Lemma 5.3.5. (Gauss lemma) Let A,B,C ∈ K[X] be non-zero. We assume A ∧B = 1. Then

if A|BC, we have A|C.

Remark 5.3.6. Let A,B be non-zero elements in K[X] . Any common multiple of A and B

with minimal degree is called the least common multiple (LCM) of A and B. All LCMs of A

and B are associated. In particular, only one is unitary, sometimes referred to as the LCM of

A and B. It’s denoted as A ∨B.

Irreducible Polynomials

Theorem 5.3.7. d’Alembert-Gauss’s Theorem: Every non-constant polynomial in C[X] has a

root in C.

Therefore, every non-constant polynomial in C[X] is factorable.

A polynomial P ∈ K[X] is irreducible if it’s of degree greater than or equal to 1, and if all its

divisors are constant polynomials or polynomials associated with P (meaning the polynomials

of the form λP where λ ∈ K).

Decomposition into irreducible factors over C[X]

The irreducible polynomials of C[X] are polynomials of degree 1.

Every non-zero polynomial is a product of its leading coefficient and unitary irreducible poly-

nomials. This decomposition is unique up to the order of terms.

Corollary 5.3.8. Let A,B ∈ K[X] with B non-zero. Then B divides A if and only if all the

roots of B are roots of A, and their multiplicity as roots of A is greater than or equal to their

multiplicity as roots of B.

In particular, two non-zero polynomials in C[X] are coprime if and only if they have no common

roots.
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Decomposition into irreducible factors over R[X]

The irreducible polynomials of R[X] are polynomials of degree 1 and polynomials of degree

2 with strictly negative discriminants. Every non-zero polynomial is a product of its leading

coefficient and unitary irreducible polynomials. This decomposition is unique up to the order of

terms.

5.4 Some exercises with solutions

Exercise 5.4.1. Determine the rest of the euclidian division of Xn over (X − 1)2.

Solution:

There exists a unique couple of polynomials (P,Q) ∈ R[X] such that Xn = (X−1)2Q+R, with

deg(R) < 2. Hence, there exists a, b ∈ R such that R = aX + b, then

Xn = (X − 1)2Q+ aX + b (5.4.1)

For X = 1, we get a+ b = 1.

We derivative the formula (5.4.1), and we replace X = 1, we get a = n. Hence

R = nX + 1− n.

Exercise 5.4.2. Let P = X5 +X4 + 2X3 + 2X2 +X + 1

1. Compute the GCD of P and P ′.

2. Determine the common roots of P and P ′. Then, determine the multiple roots of P in C.

3. Prove that (X2 + 1)2 divides P .

4. Factorize P in R[X].

Solution:

1. We have P ′ = 5X4 + 4X3 + 6X2 + 4X + 1. Using Euclidian division, we obtain

P = P ′(
1

5
X +

1

25
) + (

16

25
X3 +

24

25
X2 +

16

25
X +

24

25
).

Using the euclidian division of P ′ over the rest again, we get that the GCD of P and P ′

is X2 + 1.

2. The common roots of P and P ′ are i and −i. The multiple roots of P are also i and −i.

3. P can be divided by (X − i)2(X + i)2 = (X2 + 1)2
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4. Dividing P over (X2 + 1)2, we obtain X + 1. Hence,

P = (X2 + 1)2(X + 1).

Exercise 5.4.3. For the following pairs of polynomials f(X) and g(X), find the quotient and

remainder on dividing g(X) by f(X).

1. g(X) = X7 −X3 + 5, f(X) = X3 + 7 over Q.

2. g(X) = X2 + 1, f(X) = X2 over Q.

Solution:

1. g(X) = X7 −X3 + 5, f(X) = X3 + 7 over Q:

g(X)

f(X)
= X4 − 7X − 1 +

49X + 12

X3 + 7
.

Quotient: X4 − 7X − 1, Remainder: 49X + 12.

2. g(X) = X2 + 1, f(X) = X2 over Q:

g(X)

f(X)
= 1 +

1

X2
.

Quotient: 1, Remainder: 1.

Exercise 5.4.4. For which values of α ∈ R, the polynomial P (X) = X3 − 3X + α has a root

with multiplicity 2. What is the other root?

Solution:

� Let r be a root with multiplicity 2. Then P (r) = 0 and P ′(r) = 0.

� Compute the derivative:

P ′(X) = 3X2 − 3.

From P ′(r) = 0:

3r2 − 3 = 0 ⇒ r2 = 1 ⇒ r = ±1.

� Case r = 1: Substitute r = 1 into P (r) = 0:

P (1) = 13 − 3(1) + α = 0 ⇒ α = 2.
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� Case r = −1: Substitute r = −1 into P (r) = 0:

P (−1) = (−1)3 − 3(−1) + α = 0 ⇒ α = −2.

� For α = 2, the polynomial is P (X) = X3 − 3X + 2. The roots are 1 (multiplicity 2) and

−2.

� For α = −2, the polynomial is P (X) = X3 − 3X − 2. The roots are −1 (multiplicity 2)

and 2.

Conclusion: The values of α are α = 2 or α = −2. The other roots are −2 and 2,

respectively.

Conclusion

Throughout this course, we have concentrate on a captivating exploration into the foun-

dational principles of algebra 1. From logic and mathematical reasoning to sets, functions,

relations, algebraic structures, and polynomial rings, each section has unveiled crucial concepts

pivotal in mathematical analysis and problem-solving.
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