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FOREWORD

This course handout is intended for first-year students of the Licence-Master-Doctorate (LMD)
system, specialty: Materials Science (SM) and Science and Technology (ST). It follows the
program taught in the departments of Physics within the Algerian Universities.

This course handout contains course reminders and solved exercises on the different chapters
of the Physics 1 module “Mechanics of the point”.

Tutorials were introduced to emphasize the basic concepts of classical material point
mechanics. The exercises accompanying these course reminders have been chosen for the
purpose of providing effective training to students in order to facilitate their understanding of
the course and consolidate their knowledge.

This course handout is divided into five chapters:

Chapter - 1: Dimensional Equations, Calculation of Uncertainties and Vectorial Calculation
Chapter - 2: Kinematics

Chapter - 3: Relative Motion

Chapter - 4: Dynamics of the material point

Chapter - 5: Work and Energy

I would like to emphasize that this course handout is not a substitute for lectures and tutorials.
The presence of the student and his interaction with his teacher is irreplaceable. This handout
serves as a support and guide for the student in his learning and knowledge journey.

| wish all our students a good university experience and a path full of success.

Dr. Sid Ahmed Sfiat
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Chapter 1

Dimensional Equations, Uncertainties and Vector Calculus

1.1 Dimensional Equations:

Dimension is the physical quantity associated with a physical object regardless of the unit used for
measuring the object. There are seven basic quantities of the international system chosen by physicists,
from which all the quantities of physics can be formed.

Fundamental | mass | Length Time Electrical Temperature | Quantity Light
dimension intensity of matter intensity
Unit (SI) Kg m S A k Mol Cd
Symbol M L T 1 S} N J

A physical constant is a dimensioned quantity. A numeric constant is dimensionless.
Do not confuse dimension and unit. Indeed, a physical quantity has one and only one dimension but it
can be expressed in several systems of different units.
Two physical quantities are homogeneous if they have the same dimension. One can only add or
subtract quantities of the same dimension and expressed in the same system of units.
Dimensional analysis makes it possible to find the dimension and unit of a quantity if we know a simple
equation linking this quantity to others of known dimension.
Here are some rules to follow in order to find the dimension and the unit of a physical quantity :

o Square brackets [ ... ] are used to express the dimension of the object considered.

o The arguments of mathematical functions are dimensionless.

o IfA=B"xC" alors [A] =[B]"x [C]™.

ana (A

o [l = fgwand [J Adx] = [4]..[X)

o The dimension of a quantity G is given according to the 7 fundamental dimensions :
[G] = M*LYT*©7 1° N°J* with real numbers as exponents.
The following table illustrates the different quantities formed on the basis of fundamental quantities :

Size Relationship | dimension Base unit/symbol
Length L L m
Surface s=1L° L2 m’
Volume v=1_? L m?

Time t T s
Speed v=d/t LTt ms™*

Acceleration a=v/t LT? ms”
Frequency v=1/T T! s or Hertz (Hz)
mass m M kg




Density p=m/V mL?3 kgm

Force F=ma MLT? kgms?or Newton (N)

Energy E=mc’ ML T2 kgm?s2or Joule (J)
Power P=E/t ML T3 kgm?s ® or Watt (W)
Pressure P=F/S ML'T? | kgm™s?or Pascal(Pa)

Current Intensity I | Ampere (A)

Electrical charge Q=1t IT A - s or Coulomb (C)
Voltage U=Pp/I ML kgm?s>A™ or Volt(V)
Resistance R=U/I ML T312 | kgm’s®A” or ohm (Q)
Capacity c=Q/u MILT? | kg'ms*A? or farad (f)
Inductance U =Ldi/dt MLTAI? | kgm’s A or henry (h

The following table shows the different multiples used with the units :

Multiple | 10" | 10 | 107 10° 10° 10° | 10"
Prefix | femto | pico nano | microphone milli centi | deci
Symbol F p n vl m c d
Multiple | 10 10° 10° 10° 10° 10 | 10"
Prefix deca | hecto kilo mega giga tera peta
Symbol Da h K M G T P




Exercises :

1. Find the pulsation o of the simple pendulum knowing that it is a function of the gravitational
acceleration g, the length of the wire 1 and the mass m of the material point attached to the
wire.

e o= amalbgcwhere o is a dimensionless numeric constant.

Then, [®] = [m][1]°[g]°=T"

T! = MaLb(LT'Z)C

By identifying the two parts of the equation, we obtain:a=0, b= —% and c =%

Therefore the pulsation: @ = 0(\/%

2. Find the pulsation o of a star knowing that it is a function of the density of the star p, its radius
R and the constant of gravitation G.
e o = kp?RPGC where k is a dimensionless numerical constant.
Then, [0] = [p][R]’[G]° =T
T!= (ML'B)aLb(M'lL?'T'Z)C
By identifying the two parts of the equation, we obtain: a = ¢ = % and b =0

Therefore, ® = k,/Gp

. oL L . M
3. The universal gravitational force is given by the relation: F = G ":—2
o Determine the dimension of the constant G and its unit.

o« F=G™ s =" o [gp=10E _ (T _ gpagape
r mM [m][M] M?

Therefore, G = 6.67x10 kg Tm3s?

4. Give the dimensions and Sl units of the following physical quantities :
The permittivity of vacuum &g, the permeability of vacuum p; , Planck's constant h, Boltzmann's
constant k and Stefan's constant .

e Using the electric force relationship : F = — 12 5 ¢ = — 42
ameg T 4TF T
_ Lllgllel__I1?T? _ \p1,-304.2 o 1 34,2
[eo] = 707 =wmrem =M LT P (kg'm’s'A%)
; . . . 1
e Using the magnetic force relationship : F = p, I;’; - Uy = i’TIF:
142

[FI[r] _ MLT?L

_ _ -2 -2 2p-2
Kol = Gty = "2 =~ MLT" 1™ (kems™A7)

e Using the radiation energy relationship : E = hv - h = 5

[h] = % = ML*T’T = ML’T” (kgm’s™) or (J - s)

e Using the relationship for the kinetic energy of a monochromatic gas molecule :

E=3kr->k=2
2 3T
2m—2
K] = % = T =MLU'T?0" (kgm’s k™) or (1K)



e Using the relationship of radiated power per unit area of a black body :

2n* k* 2n* k*
P="——T*=0T"> 0 ="———
15 c2h3 15 c2h3

K MIATT297Ht 5 s
lo]= [c]2[n]®  @T-1)2(ML2T-1)3 MT7©™ (kgs'K)

5. Give the dimensions and Sl units of the following electrical quantities : RC, % and VLC
e From the table, we have : [ R] = ML*T?I”%, [C] = M'L*T*? and [L] = ML*T??
Therefore, [RC] = [—] = [\/ ] T(s)

6. Give the dimension and the unit of the constant R of ideal gases.
e PV=nRT >R=%

nT
Pl[v ML™1T72]3 PR R 1y,
[R] = MH = ~a = ML’T2N7'®" (kgm’s?mol ™K

7. The speed of an object is expressed by the equation : v = At3 — Bt ++/C.
o Give the dimensions and units of the coefficients A, B and C.
o [v] = [A][t]® = [BI[t] = [C]"/?=1T"
[A] =LT* (ms™),
[B] = LT? (ms™)
[C]=L’T? (m’s?)

8. The force of friction acting on a body is proportional to the square of its speed.
o Give the dimension and the unit of the constant of proportionality.
e F=kv? ok==
v

_ I _ MLT 2
[ ] - [v]2 - (LT—1)2

= ML™ (kgm™)

9. In an electric circuit, the intensity of the current obeys the differential equation :
di , . . . .
R d—; + %l = 0 where Ris a resistor and C is a capacitance.

o Using these quantities, define T a time homogeneous quantity.

2] - 2]~ mier -

Therefore,7 = [RC] =T

@0 &y
dt2 T+ Q dt + o’y =
o Determine the dimensions of the quantities wy and Q.

d’y] _ [wody [y] -

[dtz]_[Q dt]_ wo'yl =13 =LT7*
[wo]?[¥] = LT™? - [w,] —T-1 (s™)
[wo] d_y] _ [wol Iyl
[Ql (@] [T]

10. The elongation of a spring obeys the differential equation :

= LT™? - [Q] = 1 is a dimensionless quantity.



1.2 Calculation of Uncertainties:

Any physical measurement is accompanied by a margin of error called uncertainty. In general, if we
measure a quantity X and we obtain an average value ap with an uncertainty Aa, we note : X=ap* Aa.
In this case Aa is called absolute uncertainty and has the same unit as a,.

. . . A . .
One also defines the relative uncertainty ;a which represents the importance of the error compared to

the quantity measured . It is necessarily unit less and often given as a percentage.

Suppose that a physical quantity G = G(x,y, z) depends on several quantities X, y, z measured with the
uncertainties Ax, Ay, Az.

. : . __ |96 a6 aG
The maximum possible error on G is : AG = |a| Ax + |5| Ay + P Az
Here are some cases to consider :

o G=xxy > AG= Ax+Ay

o G=xy - AG = |x|Ay + |y|Ax

o G=% 5 AC = IxIAy+2|yIAx

y y
o x%yB _ Ax. Ay Az At
0 6= kTZs - 86 = G(lal =+ 18I+ Iyl S5 + Y )

The number of significant digits retained in a result should never imply greater precision than the data.
In a calculation, the uncertainty of a result should never be greater than that of the least precise data.




Exercises :

1. Find the electrical resistance R in a simple electrical circuit where the current intensity has the
value of | = 0.10 mA with an uncertainty Al = 0.01 mA and the voltage U across the resistor has
the value of U = 1.50 V with an uncertainty AU = 0.01 V.

e  First of all, we calculate the average value of the resistance R knowing that R=U/I ;

this gives : R = 1.50/0.10x107*= 15000 Q.

UAI4+IAU _ 1.5%0.01x1073+40.1x1073x0.01
12 (0.1x1073)2

Finally, the measurement we made gives us : R = (15000 + 1600) (0.

Then, the uncertainty AR = = 1600 Q

2. The period of oscillation T of a simple pendulum is given by the formula: T = Zn\/g.

Give the uncertainty on g if the period is T=(2.20 £ 0.01) s and the length | = (120 + 1) cm.
e First we calculate the average value of the acceleration of gravity g :

1.2
—Zn\f - g =4m? ——4 2(22)2~979m/s

2IAT 0.01 2%1.2%0.01
4 - s
T3 ] [2 22 2.23

Finally, the acceleration of gravity : g = (9.79 + 0.17) m/s >

] = 0.17 m/s?

Then, the uncertainty Ag = 4m [T2 +

3. Let A be the angle of a prism and D the angle of deviation of an incident ray after passing

through the prism. The refractive index of the prism in the case of minimum deviation is :
__sin((A+D)/2)
- . A
sin (5)

. . . An .
o Find the relative uncertainty 7“ in the case AA = AD.

. An=|a AA+| |AD

on _1 &TD) -cotan (é)ﬁ =1 (cotan( ) cotan( ))
A~ 2 sin(?) 2 sin(?) T2

on _ 1 COS(A;—D) 1 A+D

=2\ ") )T 2" (cotan(*3%) )

%n = —(| tan(—) cotan( ) |AA + |cotan(—)| AD)

In the case: AA = AD = ¢, the relative uncertalnty — 2 becomes:

Af = %s(|cotan (A;D) cotan( ) | + |cotan( +D)|)
Because|c0tan (A:D) cotan( ) | = cotan (2) — cotan (#)

Therefore, in le(cotan (é))
n 2 2

4. We measure the diameter and the mass of a gold ball :
=(10.00+0.01) mmandm=(9.9+0.1) g
o Calculate the volume of the ball with its relative uncertainty as well as its absolute

uncertainty.



o Calculate the density of the ball with its relative uncertainty as well as its absolute

uncertainty.

e The volume of the ball V = gnr?’ = %nd?’ ~ 523.6 mm3 = 0.5236 cm?

AVV - 3% =0.003=03% — AV =V *AV" = 523.6+0.003 ~ 1.571 ~ 1.6 mm>
Therefore, the volume : V = (523.6 + 1.6) mm?
_m_ 99 3
* P=ET =5 1891 g/cm

fp _am AV _ 911 0.003 ~ 0.01 + 0.003 = 0.013 = 1.3%
p m %4 9.9

Ap = pAp = 18.91 % 0.013 ~ 0.25 g/cm3
Therefore, the density : p = (18.91 + 0.25) g/cm3

5. The dimensions of a rectangle are : a=(5.35+ 0.05) cm and b = (3.45 £ 0.04) cm

o Calculate the perimeter and area of the rectangle.

e L=2(a+b)=2(5.35+3.45)=17.60 cm
AL =2(Aa + Ab) = 2*(0.05 + 0.04) = 0.18 ~ 0.2 cm
Therefore, the perimeter : L=(17.60 £ 0.18) cm or (17.6 £ 0.2) cm
S=a*b=5.35*3.45 = 18.4575 ~ 18.46 cm’
AS = a*Ab + b*Aa = 5.35%0.04 + 3.45*0.05 = 0.3865 ~ 0.39 cm’
Therefore, the area : S = (18.46 + 0.39) cm”or (18.5 + 0.4) cm”?

6. The radius of a sphereis r=(10.00 + 0.08) cm
o Calculate the area and volume of the sphere
o S=4nr?=4m10? =~ 1256 cm?
AS = 8nrAr = 8110 % 0.08 ~ 20 cm?
Therefore, the area : S = (1256 + 20) cm?
o V= gnr3 ~ 4189 cm3

AV = 4nr?Ar = 100 cm3
Therefore, the volume V = (4189 + 100) cm?®

7. A cylindrical volume with diameter d = (1.62 + 0.03) cm and height h = (3.44 £ 0.05) cm has a

mass m=(23.2+0.1) g.
o Calculate its volume and density.
o V=2d?h=7162%+344~7.09cm?

AV = g dhAd + gdzAh ~ 0.37 cm3

Therefore, the volume : V = (7.09 + 0.37) cm?
—m_232 3
* p= =0 3.3g/cm
0.37

Mp _Am AV _ 01 L 037 - 3
T Ty _23.2+7.09~0.06 - Ap=02g/cm

Therefore, the density : p = (3.3 £ 0.2) g/cm3



8. The sides opposite and adjacent to the angle 8 of a right triangle are respectively :
a=(121+0.1)cmand b=(23.3+£0.2) cm.
o Calculate the angle fand length of the hypotenuse.

o 0=tan}}) =tan"I(;) ~27.4°
AG = 2+b2A a+— bzAb 0.0069 rad ~ 0.4°

Therefore, 8 = 27.4° + 0.4°
e c=+vVa?+b%=~=2625
a
Ac = \/ﬁA \/Z—bAb =~ (.22
Therefore, the length of the hypotenuse is: ¢=(26.25+0.22) cm

9. Avehicle consumes V = (48.6 + 0.5) liters of fuel while traveling d = (530 + 20) km.
o Calculate its average consumption in liters per 100 km.

100V _ 4855100 _ ¢, 1/100km

* (=T
AC = 1002222 ~ 0.5 1/100km
Therefore, the average consumption in liters per 100 km is :
=(9.2+0.5)1/100 km
The vehicle travels at a speed v = (100 + 5) km/h and comes to a standstill in a time (3.3 +£0.1) s.
o Calculate the average acceleration of this vehicle in m/s’.
(100 £ 5) km/h = (100 % 5) * 1000/3600 m/s = [(1000 * 50)/36] m/s

e a=dv/dt= %03/36 ~ 8.4m/s?
Aa = tAv+vAt ~ 0.7 m/s

Therefore, the average acceleration : a = (8.4 + 0.7) m/s’

10. Consider the following two circuits with :
R, =(150+10) Q,R,=(200+12) Q,E=(100+5)Vandr=(10+1)Q
o Calculate the current intensity in the following circuit :

—{r=
E
Ri Rz

— ——[— 11—

o The intensity of the current is given by the formula: I = HLR
The two resistors R;and R, are in series : Ry = R; + R, =150+200=350Q
_ 100 0.278 A
T 104350
ARy =AR; + AR, =10+ 12=22Q
E E
A= |2 A + || ar + |5 |AR——RAE+(r+R)2Ar+(r+R)2AR



O

1 100 100
"~ 104350 + (10+350)2 1+ (10+350)2 22 =~ 0.032 4

Therefore, the current intensity | = (0.278 £ 0.032) A
Calculate the current intensity in the following circuit :

4|E|-|:r| II:I |
l |

Ry*R, _ 150200
Ri+R, 1504200

Al

The two resistors R;and R, are in parallel : Ry = ~ 85.714 O
100

I=T0+85714

~ 1.0454

_ (R1)?AR;+(R2)?AR; _ 1502%12+200%+10

ARt = (R1+R5)? B >47Q
0l 0l 0l 1 E E
Al= [ ] AE + [T ar + | T AR = o AE + R ar 4 o
1 100 100

547 = 0.123 4

= 1
10+85.714 +(10+85.714)2 +(10+85.714)2

Therefore, the current intensity | = (1.045 £ 0.123) A




1.3 Vector Calculus:

A scalar is a quantity totally defined by a number and a unit : time, temperature, mass, energy, etc.
A vector is a mathematical entity defined by an origin, a direction, a direction and an intensity :
displacement, velocity, acceleration, force, angular momentum, etc.

To each vector 4, we can associate a unit vector u which has the same direction and whose norm is

—

A

Al

In the space referred to an orthonormal basis (7, J, k), the vector Ais expressed by the formula :
A=A T+ A+ Ak

equal to unity. The unit vector is obtained by dividing the initial vector by its modulus : U =

and its modulus |Z| is : |Z| = \/sz + Ay2 +A,°

Noting by a, B et y the respective angles formed by the vector A with the axes OX ,0Yand OZ:
Ay = Acosa, A, = Acosf,and 4, = cosy.

We can deduce the expression : cos?a + cos?f + cos?y = 1

Vector Operations:
1.3.1 Addition of vectors:

Let be two vectors U and 7, the vector resultant of U and V is a vector W located in the same plane
suchW =U +V that:
W = (U, + V)T + (Uy + V)] + (U, + )k

=1

—
—

u U

The magnitude of the vector Wis expressed by the expression :

., —2 =2 = =

[#] = J[G[" + 7" +2/6] « [7] + coso

with @ = (U, V) the angle between the vectors U and V.

If & = 90°we find the Pythagorean formula : |W| = |l_l)|2 + |V)|2

The subtraction of two vectors U and V is a vector S located in the same plane such that :
S=U-V= (U~ V)i+ Uy, —V)j+ U, — k.

The magnitude of the vector § is expressed by the expression : |§| = \/|U)|2 + |V)|2 - 2|ﬁ| * |V| * cos6O

10
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1.3.2 Scalar Product:

The dot product between two vectors U and V is a scalar defined by the relation :
U-V= |l_f| * |V| * cos6

The scalar product is zero if one of the vectors is zero or the two vectors are orthogonal.

In the space referred to an orthonormal basis (7, ], E), the scalar product is expressed by :
U-V=UVe+U, -V, +U,-V,

The scalar product measures the angle between two vectors UandV:

UV _ Uy Vi + Uy Vy + UV,

[u]v] \[Ux2+uy2+uzz\/vx2+vy2+vzz

The angle is acute if the scalar product is positive and obtuse if the product is negative.

cosf =

[

The vector projection of vector U onto vector Vis U, = l“;TV

1.3.3 Vector Product:

The cross product between two vectors U and V is a vector denoted W = UAV orthogonal to the two

vectors with a direction that gives the triple (l_f, WW)a direct orientation. The vector product is zero if
the vectors are collinear or if at least one of the two vectors is zero.

In space referred to an orthonormal basis (1,7, E), the vector product is expressed by :

7k
W=I\U, U, U= (Usz - Usz)?_ UV, = U V)T + (UxVy - Uny)k
Ve Y Y

The modulus |W| = |ﬁ/\7| = |l7| * |V| * |sinf| represents the area of the parallelogram constructed

from the vectors U et V.

11



1.3.4 Mixed Product:

The mixed product between three vectors l_f, Vand W is a scalar defined by the expression :

W, W, W,
S=W-(UN)=|V: Uy, U,
e VoV

The mixed product is zero if the three vectors are coplanar, or two vectors are parallel, or if at least one
of the three vectors is zero. It is positive if the triplet (Tf,V;W) forms a direct trihedron and negative if
the triplet (l_f,V,’W) forms an indirect one. The mixed product is invariant under circular permutation.

Its absolute value represents the volume of the parallelepiped built on the three vectors (l_f,V:W).

1.3.5 The derivative:

=
The derived operation is an application which to each vector A is associated a vector given by :
dA _ dAy- , dAy aay
dt ~ dt dt t

1.3.6 Gradient:

The gradient operation is an application which, with each scalar field S, is associated with a vector field
whose value at each point is given by :

grads = Vs = a—Si’+ﬁf+ gl_c)

1.3.7 Divergence:

The divergence operation is an application which to each vector A is associated a scalar whose value at
any point is given by :

divA =V.4 = %y 4 %4

ox ay dz

it is useful to know that : %divz = div‘;—': and divSA = VS.A + SdivA

1.3.8 Rotational:

The rotational operation is an application which to each vector A is associated a vector field whose value
at each point is given by:

Tk
——> o,> | d J | _ 0A, aAy 04, aﬂ N aAy an
rotA=VM=15 5 5|6 ") -G T T G5k
A, A, A

it is useful to know that : rotgradM VAVM = 0 and divrot A = V.VAA = 0

12



In a rectangular triangle, we have the following usual relations :

. 3—‘4
sin =z
B—B
c Cos =7
B tang =2
anfd =—
A
A
d l_ cotanfd = —
A B

In any triangle, we have the following relations of sines and cosines :

singa B sinfi B siny
A B ¢

C =+/AZ+ B2 — 24 B * cosy

The sum of the interior angles of any triangle is equal to 180°.
The area of a triangle is equalto: S = %A - Bsiny = %A -Csinf = %B - Csina

The sum of any two sides in a triangle is greater than the third one.

13



Exercises :

1. Inan orthonormal reference OXYZ , we have the vectors :
A=4i—3]+2k B=2i—3j+3kandC=—-2{—j+k

O

O

O

Calculate the modulus of each vector.
Calculate vectors D = 24 + 3B — c andE=4+B - c

Calculate the vector projection of the vector D on the vectorE

4] = \/sz + A% + A, = VAT + 32+ 22 =29
|§|=\/B2+By2+BZZ=\/22+32+32=\/ﬁ
|f|=\/C2+CZ+CZZ=\/22+12+12=\/€
D=24+3B—-C=167—14j+ 12k
E=A+B-2C=100—4j -3k

- DE—=  16+10+14%4—12+32 362
DE_WE_ 102+42+32 25

2. Inthe previous exercise :

O

@)

@)

Calculate the angle between Aand B
Calculate the angle between Aand C
Calculate the angle between Band C
AB=4%2+(-3)(-3)+2+3=23

'S
5]

A-B= |A||B| cos(a,B) — cos(a,b) = W = \/2_2\3/2_2 ~ 0.91 > (a,b) ~ 24.41°
AC=4%(-2)+(-3)(-1)+2+1=-3

A-C= |Z||Z')| cos(a,c) — cos(a,c) = |ZZ)|.|CC| \/_\/_ —0.23 = (a,c) ~ 103.15°
B-C=2+(-2)+(-3)(-1D)+3*1=2

B-C= |§||C| cos(b,c) = cos(b,c) = ;fa \/2_;/6 ~ 0.17 = (b,c) ~ 79.98°

3. Inthe previous exercise, calculate :

O

O

The area of the parallelogram constructed from DandE.

the volume of the parallelepiped built on the three vectors A,DandE.

-

~ o U]k .
S=|DAE| = {16 —14 12|| =907+ 168] + 74k| = V90? + 1682 + 1742
10 -4 -3
Therefore, the area S = 258 u?
o 4 -3 2
= |A.(DAE)| = -14 12
10 -4 -3

14



Therefore, The volume V = 8 u3

4. Letthe vectors be 4 and B.

Dal
51

o Demonstrate that |A/\B| + (A.
o Showthat4 L B if |A+B| |Z

. |A/\B| = ||A| _)| *sm9|
|Z| |§| * cosO
Therefore : |A/\B| +(A.B)? = 4] |§|2(00529 + sin?0) = |X|2|§|2
« [A+B|=]A-B| - |A+*| =|A-B’=(A+B).(A+B)=(A-B).(A-B)
S|A + B +24B =4 +|B|'-24B - 4B=-4B > 4B=0
Therefore:A L B
5. Let be the three vectors Z,ﬁ and C. Give their projections on the axes OX, OY, O'X'and O'Y'

knowing that |Z| =10u, |§| =8uand |E| =9u,0 =60°and ¢ = 15°.
o Calculate the resultant D = 4 + B + C in the system OXY and O'X'Y".

(0).4 YY o'x' oY
a 0 -10 10*sin60 =~ 8.66 —10*cos60= —5
B 8*sin60 ~6.93 8*cos60= 4 0 8
c —9*csinl5=2.33 | 9% cos15=8.69 | —9*cosl5 =~ —8.69 9*sin15 =2.33
D 4.60 2.69 —0.03 5.33

Note: |ﬁ| =~ V28.40 u in both systems.
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6. Letthe vector 4 = 4xt%7 — 3sin(2t)] + i—xSl_c) where t and x are independent real variables.

dA dA
Calculate T and -

k

= 8xti — 6cos(2t)] — (t+5)2

7. Letthe functions f(x,y, z) and be g(x, y, z) defined in the space of reals as :
_ [x2 24,2 — |7 -1 _1
o f(x,y,z) =x?+y?+2z?2=|rlandg(x,y,2) = Tt
o Calculate gradf = Vf(x,y,z) and gradg = Vg(x,y,2)

_ f—) af-» af_’ _ X - y - z 7
° Vf(x Y z) =500 _] + az Jx2+y2+22 Lt \/x2+y2+22] JxZ+yZ+272

xi+yj+zk T

Therefore Vl?l = \/ﬁ = ﬁ

L 09, , 097
. Vg(x v,2) = a—gl + 69] +a—£Z]k
\Y) — 7 / = :
Vg(x,v,z) = R 22)3/2 (xz +y2 + 22)3/21 + (x% + y2 + z2)3/2
1_ Gityjrak
Therefore : VI Tl (24242232 P

8. The vector V(t) is dependent on the real variable t.
_dvl

o Prove that if its direction is constant, then [— v

dt

v
o Show that if its magnitude |V| is constant, then V 1 v

The vector V(t)is expressed asV(t) = |V|v where U is the unit vector of V()

av _ d|V|v —>d|V|
a =VIG+9%
e Ifthe direction of V is constant, then ¥ is constant — % =0
lav] _ alv|
Therefore : 2l = a
. = =212 oo d V|2 —dvV
e If the magnitude |V| is constant: |V| = V.V = constant — prale 0- ZV'E =
Therefore: V L %
4 = > 2x 7
9. Letthe vectorV = 8xyl — 6ycos(2z)] — =15
o Calculate 7ot V, divV and divrot V.
7 7 k
s o a a a
o 10tV =VAV =| 5% 3y 3z | =—12ysin(22)7 + ] — 8xk
2x

8xy —6ycos(2z) ~ s

16
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o divl =V.V= 8y — 6cos(2z) + 2x

(z+5)2

e divrotV = 0 (Theorem)

10. Let be the vector ¥ = acoswtl + bsinwt] where a, b and w are real constants.
Calculate F/\d—? and F/\d—z?
dt dt?’

dr

e —= —awsinwtt + bwacoswt]
d%7 2 - 2 . - 2=
= -5 = —aw“coswtl — w bsinwt] = —w*r
-
S 1 j k
AL = : = abwk
e AL =| acoswt bsinwt 0| = abw
—awsinwt bwacoswt 0
A a*r
r _—=
dt?

17



Chapter 2

Kinematics

Kinematics is the branch of mechanics that describes the motion of a body with respect to time.
The trajectory is the geometric locus of the successive positions occupied by the material point over
time and with respect to a chosen reference system.

2.1 Displacement:

Displacement is a vector linking two positions of the mobile M;and M, at times t; and t, respectively :
M1M2 = OMZ - 0M1

2.2 Velocity:

The velocity vector V of a mobile is the rate of variation of its position vector OM with respect to time.
This variation can concern the direction of W, its modulus or both. The unit of velocity in the
international system (Sl) is the meter per second (m/s).

The average velocity of a mobile between two times t; and t, corresponding to positions M;and M, is

' L2 OM;-0M; _ AOM
defined by the ratio: V,,, = —2—21=——

th—ty At
The instantaneous velocity vector of a mobile, at time t, is given by the relation :
= AOM _ dOM
V =lim —_—=—
At=0 " pp dt

The instantaneous velocity vector V is at each instant tangent to the trajectory and its direction is that of
the movement.

2.3 Acceleration:

The acceleration vector @ translates the rate of variation of the velocity vector V as a function of time.
This variation can concern the direction of the velocity, its modulus or both. The unit of acceleration in
the international system (SI) is m/s”.

The average acceleration of a mobile between two times t, and t, corresponding to positions M;and M,
is defined by the ratio : a,, = % = %

\71 and VZ are the velocities of the mobile at positions M;and M, .

The instantaneous acceleration vector of a mobile at time t is defined by the relation :

o7 _ dv

At dt

d is always oriented towards the concave side of the trajectory.

d =limy; g

t=

The position is defined from velocity by : 7(t) — 7(0) = fo V(t)dt
The velocity is defined from acceleration by : V(¢) — V(0) = fot a(t)dr
The motion is said to be accelerated if @ - V is positive , and decelerated or delayed if a - Vis negative.

As for the direction of movement, it is indicated by the direction of the velocity V.
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2.4 Straight motion:

Rectilinear movement is a movement for which the trajectory followed is straight. The reference can
then be reduced to an origin O and an axis OX carried by the trajectory.

The position M of the mobile is identified by the position vector : W(t) =x(t)T

The graph of x(t) constitutes the diagram of the spaces.

Example : the diagram of the spaces in the case of a free fall of a body released at the origin O of a
vertical axis directed downwards is : x(t) = %gt2

x{m)

]

t(s)
Displacement is a vector linking two positions of the mobile M; and M, on the axis OX at times t;and t,
respectively : MM, = OM, — OM; = (x; — x¢)T

. . X7 Xo—X1) > Ax

The average velocity is V,,, = Gor)y M

t,—t, At
Mz

B
= 3
My At

Q ty t(s) tZ

The average velocity is therefore the slope of the secant M; M, .

L . distance totale parcourue
the scalar average speed is given by the ratio = ik
temps total mis

. . 37 - dx -
The instantaneous velocity vector V = V.1 = —1

dt
dx

where " represents the slope of the tangent to the space diagram at the point corresponding to time t.
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E
=
¥k — — —
I
I
| @x=0 ifthe concavity istowards the positive direction of the axis (Ox)
I
| @x<0 ifthe concavity is towards the negative direction of the axis (Ox)
|
I
o t t(s)

av. d?x
The instantaneous acceleration vector @ = a, I = d—t"? = F?

2.4.1 Uniform rectilinear motion:

The motion of a mobile is uniform when the algebraic value of its velocity V, is constant. It is a motion
without acceleration by virtue of the relation :
@y =5 =05 x(t) = x(0) = [{ Vedr =Vt > x(t) = x(0) + Vit

Gz Ve X

Xo

2.4.2 Uniformly varied rectilinear motion:
The motion of a mobile is uniformly varied when the acceleration of the mobile a, is constant.

a, = de V.(t) — V,(0) = f adt = a,t = Vi (t) =V, (0) + a,t
Ve = E - x(t) —x(0) = fo Ve(r)dr = fo (12(0) + ayT)dr

x(t) = x(0) + V(0)t +3 at?

x(t) = x(0) + V(D — 2 ayt?

£(6) = 2(0) + vx(o)+vx(t)

Ve (£)2 =V, (0)?
x(t) = x(0) +—( SO

t
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Particular natures of rectilinear motion :
¢ I/, constant : the movement is uniform rectilinear;

® a, constant : the movement is rectilinear and uniformly varied;

N

¢ a, V, > 0:the movement is rectilinear accelerated (uniformly if a, constant);

¢ a, V, < 0:the movement is rectilinear decelerated or delayed (uniformly if a, constant).

2.5 Curvilinear movement:

“u_n
S

The abscissa

representing the algebraic value of the arc M; M, between two times t;and t,

corresponding to positions M; and M, is introduced. We define, respectively, the curvilinear velocity and

acceleration by the relations :

V(t) = dzl—(tt) and a(t) =

av(e) _ d?s(t)
dt  dt?

M2
s s=R#a
df
My V_R;
a= Rﬁ
des

In general, to determine the curvilinear motion of a mobile, we use its intrinsic components which are

its algebraic projections on :

* atangential axis (MT) provided with the unit vector U directed in the direction of movement

* anormal axis (MN) provided with the unit vector Uy, oriented towards the concave side of the

trajectory.
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dsﬁ)
dc T

The vector acceleration @ has two components : d = ar + ay = apUr + ayly

The velocity vector ¥ is oriented according to the vector Uy : ¥ = vy =

ar and ay are, respectively, the tangential and normal components of the acceleration.
the unit vectors Uy and Uy form an orthonormal basis called the Frenet basis.

= av _ d’s o ds dur _ d?s i ds ds dur
Tat a2 T Tat at a2 T U atdt ds
. . du 1
We will admit without proof that :d—ST =y

where p (s) is called the radius of curvature of the trajectory at the considered point.
This results in the following explicit expression of the acceleration :

v3

[vAal

The radius of curvature of the trajectory at the considered point is given by the expression : p =

¥
Varied rectilinear motion : rectilinear means that there is no variation in the direction of the velocity

vector; in this case the radius of curvature p of the trajectory is infinite and therefore the normal

. . dv
component ay = 0, and varied means the tangential component a; = i 0.
Uniform circular motion : circular means that the mobile moves on a circular trajectory of radius R = p

2
v .
and therefore ay = " # 0, and uniform means ar = 0.

2.6 Study of motion in polar coordinates:

This coordinate system is suitable for studying plane motions with rotational symmetry. The
identification is carried out relative to a polar axis ( OX ), of origin O called pole. We can then locate the
position of any point M of the plane containing ( OX ) by :

Polar radius r(t) = |0—ﬁ| and polar angle 6(t) = (EY,W)

In this system we use the base constituted by the unit vectors :

e U, having the direction and sense of OM

e T, obtained by rotating U, through an angle 90° in the counterclockwise direction.
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The base (U, Up) is related to the point M, and because of this the directions of the unit vectors can
vary with time. Their derivatives satisfy a certain number of relations, in particular, it will be
admitted without proof that :

dt _ dat 9 at ~ dt T
ug u,
¥ M
r x = rcosd
v =rsinf
g
(] ¥

The polar coordinates r and 0 of the point M are related to the Cartesian coordinates by the following
relations :
x =rcosf and y = rsinf
U, =Icosf +jsin@ and Uy = —Tsind + jcosH
The position vector is . OM = Tu,
ar —

. N 17 d9—> . —> A—>
The velocity vectoris: V = 2 Ur troug =74, + rOug

The acceleration vector is : d = (# — 762U, + (27 + r0)u,

2.7 Study of movement in cylindrical coordinates:

When a movement takes place on a cylindrical or spiral surface, we often use the cylindrical coordinates
which we define with respect to the Cartesian system. The mobile M is then identified in the base
(ﬁp,ﬁg,E) by: the polar coordinates p and 6 of its projection on the plane (O, X, Y) and its axial
coordinate z.

x = pcosf
¥ = psinf
z=z
X
U, =icosd +Jsin and Uy = —Isinb + jcosd
The position vectoris: OM = pﬁp + zk
The velocity vectoris: V = Z—fﬁp + p%ﬁg + 2k = pu, + pOug + zk

The acceleration vectoris : @ = (p — p62)u, + (296 + p6)uy + 7k
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2.8 Study of movement in spherical coordinates:

When a movement takes place on a spherical surface, one often uses the spherical coordinates which
one defines compared to the Cartesian system. The mobile M is then identified in the (ﬁr’,ﬁg,ﬁ(p) base
by : (1, 8, @) where r representing the radial coordinate corresponding to the distance from the origin O
to the mobile M, the angle 8 between 0 and 7, corresponds to the angle between OM and the axis OZ

and the angle @ between 0 and 2, corresponds to the angle between the plane defined by the axis OZ
and OM with the axis OX .

x = rsingcosd

v = rsingsing

'{P\ Y Z =Trcosy
1

U, = icospsind + Jsingsind + kcosd

X

g = lcospcosh + jsingcosd — ksind

U, = —Ising + jcosp
The position vector is : OM = ru,
The velocity vectoris: V = S Ur tr—-ug + rgsinfu, = 1u, +rouy + rgsindu,

The acceleration vector is :

d=(#—r6%—r¢?sin?0)u, + (210 + r6 — r¢?sinfcosd )y + (r@sind + 27 @sind + 2ro@cosd ),

2.9 Simple harmonic motion:

. . . . . . ae
Consider a point M moving on a circle of radius A at constant angular velocity w = s
When M moves on its trajectory, its projection M, on the axis (OX), performs oscillations on the segment
PP' centered in O.

The projection M, of the mobile M has for abscissa : x = Acos6
The value of the angle 8(t) is 6(t) = 6, + wt
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Such that : x = Acos(8, + wt)

The movement of M, is a simple harmonic motion; its characteristics are :
A : amplitude

w : the pulsation or angular frequency

0y + wt : the phase and 6, the initial phase.

Harmonic motion is periodic :

n i —2n -1_@
x(t) =x(t + Z) of period T = - and frequency f = = o
Its velocity V (t) = —Awsin(6, + wt)
and its acceleration a(t) = —Aw?cos(8, + wt) = —w?x(t)
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Exercises :

1. The diagram of the velocities of a mobile A animated by a rectilinear movement on an axis OX is

given by the figure below:

(@)
O
O

V(tf
20

10

Plot the diagram of acceleration as a function of time.

What are the different phases of movement and their nature.

Determine the position of the mobile at times t=10s, and t = 20 s, knowing that initially
the mobile was 10 m from the origin. At what moment does the mobile turn back?

(m/s)

| ] 11 | A
| , t(s)
5 10 15 20\
The acceleration graph :
a(t) |(m/s?)
2 —
| | | 1
5 10 15 20 t(s)
-2
A

Between 0 and 5 s, the speed is constant — the accelerationa; =0
— Uniform rectilinear motion.

Between 5 s and 10 s, the speed varies uniformly — the acceleration is represented by

10 o . . .
the slope a, = <= 2m/s? — Rectilinear uniformly varied motion.

Between 10 s and 15 s, the speed is constant — the accelerationa; =0
— Uniform rectilinear motion.
Between 15 s and 20 s, the speed varies uniformly — the acceleration is represented by

-20 - . . .
the slope a, = - = —4m/s? — Rectilinear uniformly varied motion.

The displacement of the mobile at t = 10 s is represented by the initial distance and the
surfaces S;and S, in the graph V(t) — X(10) =10 + 5x10 + (10 +20)x5/2 =135 m
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The displacement of the mobile at t = 20 s is represented by the initial distance and the
sum of the areas S;, Sy, Syyand Sy in the graph V(t) :

— X(20) = 10 + 5*10 + (10 +20)*5/2 + 5*20 + 20*5/2 = 285 m

At instant t = 20 s, the speed of the mobile changes sign and becomes negative

— the mobile turns back at this instant.

2. An object is thrown up from the top of a building with a speed of 12.0 m/s. It reaches the

ground 4.25 s later.

O

O

O

What is the maximum height reached by the object ?

How tall is the building ?

How fast does it hit the ground ?

The movement of the object is uniformly varied. It reaches its maximum height when its
speed vanishes. We choose the OZ axis oriented positively upwards, with origin the top

of the building. The maximum height reached by the object is therefore :
v(£)2-v(0)? _ v(0)?
Hpax = 2(t) = 29 = 29 ~ 7.35m

The height of the building is equal to the absolute value of the abscissa of the object at

the time of its collision with the ground (i.e. att=4.25s): z(t) = V(0)t — % gt?
h =1z(4.25)| = 37.5m

The speed of the collision of the object with the ground (i.e.att=4.25s):

V() =V(0)—-gt

V =V (4.25) = —29.65 m/s; the sign (=) results from the orientation of the axis.

3. A mobile moves along a straight line with the acceleration: a = 9 — t2.

O

Find the expressions for velocity and displacement as a function of time in
considering the following conditions:t = 3s; v=2m/s andx = 7 m.

e By integrating the expression of the acceleration we obtain the hourly equation of the
velocity : v(t) = v(3) + f; a(t)dt =2 + f;(9 —13)dr

Therefore, v(t) = —%tz +9t—16
By integrating the expression of the velocity, we obtain the time equation of the
position : x(t) = x(3) + f; v(t)dt =2 + f;(—érz + 9t — 16)dr

Therefore, x(t) = —%t3 + gtz — 16t + 275

4. The rectilinear movement of a mobile is defined by the equation : s = 3t3 — 2t? + 12t + 1.

O

O

Calculate velocity and acceleration

Investigate the nature of motion

The mobile velocity is v = % =9t2 — 4t + 12

The velocity v is always positive since 4 = —416 < 0 and the coefficient of t2> 0
The acceleration of the mobile is a = % =18t -4
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The movement is accelerated or retarded according to the sign of the product "a - v".
As for the direction of the movement, it is indicated by the sign of v which is positive.

So the movement is accelerated for the values of t > 2/9 and decelerated for 0 < t < %-

5. A mobile moves along the OX axis with a velocity v = 2t — 5 (m/s)

Calculate its acceleration as well as its time equation knowing that at the initial moment

o
t = 0, the mobile was at the point of abscissa x = 6 (m).
o Investigate the nature of motion
e The acceleration of the mobile isa = % = 2 (m/s ?), the acceleration is constant.
e By integrating the expression of the velocity, we obtain the time equation :
x(8) = x(0) + [ v(r)dr =6 + [, (27 — 5)dr =t? — 5t + 6
o Llet us study the sign of "a * v" = 2(2t — 5) : it is positive fort > 5/2 (accelerated
movement) and negative fort < 5/2 (decelerated movement).
6. A mobile moves in rectilinear motion. Its acceleration is given by a = —ﬂ—: x

knowing that at the moment t = 1 s, the mobile was at the point of abscissa x = 1 m with a

. Vi
velocity v = i m/s

O

Determine the nature of the movement, write its time equation.

We notice that we have a differential equation which is the characteristic equation of
2

sinusoidal rectilinear motion : a + w? x = 0 with w? = ﬂ—4

and its solution is of the form : x(t) = Acos(wt + @) with x(1) =1

with a velocity v(t) = —Awsin(wt + @) with v(1) = — %

x(1) = Acos(w +¢) =1 and v(1) = —Awsin(w + @) = —%
Therefore : wtan(w + @) = %

Sincew=§then:tan(w+<p)=% - wte=

ol
\
S
I
I
e

1 _ 1 _2
cos(w+p)  3/2 V3
2

Therefore, the time equation of rectilinear sinusoidal motion is x(t) = ﬁcos(g t— g)

-5 A=

Pulse w = % rad/s, amplitude A = % m and initial phase ¢ = —g rad.

NG

7. The plane motion of a mobile is defined by : x = sin?(t) and y = 1 + cos (2t)

e}

e}

Determine the trajectory of movement.

Calculate the coordinates of the velocity vector and those of the acceleration vector.
Knowing that cos(2t) = 1 + 2sin?(t), we obtain the following relationship between x
andy: y = 2(1 — x). Thisis a straight line. Since0 < x <1land 0 <y < 2:

The trajectory is therefore a line segment joining the points (1,0) and (0,2).

The velocity vector has the coordinates :
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vy = 25sin(t) cos(t) = sin(2t) and v, = —2sin(2t)

Therefore : v, = —2v, with v,(0) = v,(0) = 0 and v,, (%) =1, (%) =0

e acceleration vector has the coordinates : a, = 2 cos(2t) and a, = —cos(2t)

a, = —%ax with a,(0) =2, a,(0) = —1and a, (g) =-2,a, (g) =1

8. A particle moves in an XY plane according to the law : a, = 2sint and a,, = 3cost.
Knowing that for t=0, we have:x =0,y = -2 and V, = -2, =0.
o Find the equation of motion.
o Find the equation of the trajectory.
e v,.(t)—1v,(0) = fot a,dt - v,(t) = —2cost
vy (t) = 1,(0) = fotl/;,dr - 1,(t) = 3sint
x(t) —x(0) = fot v, dT - x(t) = —2sint
y(t) —y(0) = fot vydt - y(t) = —3cost +1
e By using the trigonometric property : (sint)? + (cost)? = 1

x*  -1?
Tt 5= 1
The trajectory is an ellipse centered at (0,1) with minor axis a = 2 and major axis b = 3.

9. Consider a mobile M in motion such that : OM = 6costi + 6sintj + (8t — 3)k
Determine the nature of the trajectory of M in space (O, X, Y, Z) ?
Express ¥ and d in cylindrical coordinates and determine their modulus ?
Find ¥ and d in Frenet 's frame ?

Deduce the radius of curvature p ?

The nature of the trajectory in the plane (O, X, Y) :

o O O

X = 6cost and y = 6sint
Therefore : x2 + y% = 36
The movement in the plane (O, X, Y) is circular with radius R = 6 m and center (0, 0)
Along the OZ axis : z = 8t — 3 ; the movement is rectilinear along OZ.
Therefore, the motion along space (O, X, Y, Z) is helical.

e The position of the mobile M, its speed and its acceleration are therefore expressed in
cylindrical coordinates as :

OM = 61, + (8t — 4)k

— dOM -
vV=—r= 6ug + 8k with |¥| = 10 m/s
— d‘l_j — . —
d =— = —6l, with |d| = 6 m/s?
dt p
e 7vandd inthe Frenet frame :
i;: 1OﬁT
— - - — dv 172—)
a= aT + aN = aTﬁT + aNuN = Eﬁ'[‘ +?uN
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172—>

. dv s
Since ay = — = 0, therefore d = Sy = 6uy
v? v?

—=a - =
P) N p an

. . 50
Therefore, the radius of curvatureis: p = S m

10. An arm OA rotating with a uniform angular speed w around an axis OZ, is articulated at A
with a rod AB. The rod AB is attached to a slider B which can slide along the axis OX .
The arm and rod may cross as the rod passes behind the articulation O.

Knowing that AB=Land OA=R:
o Find the equation of motion of B, knowing that B passes through Agat time t =0,
o At what instants does the velocity vanish?

Y

e Making use of the cosine law : AB? = 0A? + OB% — 20A. 0Bcos(wt)
[? = R? + x? — 2xRcos(wt) — x(t) = Rcos(wt) + /L% — R?sin?(wt)
It can be checked that x(0) =R + L

dx , wR?sin 2wt)
v(t) = — = —wRsin(wt) - ——
¢ ® dt (wt) 2,/L2—R2?sin2(wt)

. k . .
e The speedvanisheswhen wt =kn — t= f where k is an integer.

11. Consider the position vector of a mobile 7 = 2¢27 + (5 — 3¢)] — t3k.
o Calculate its velocity and acceleration.
o Study the nature of motion.

e Mobile velocity B = % = 47 — 3] — 3t%k
Its modulus [¥| = V9 + 16t2 + 9t*
e Mobile acceleration d = % = 47— 6tk

Its modulus |d| = V16 + 36t2

The scalar product a.¥ = 16t + 18t3 is positive

Consequently, the movement of the mobile is accelerated.
3

e The radius of curvature is given by the relation : p = wAal

DA = 187+ 12t%] + 12k
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(9+16t249t%)3/2
(144+324t2+144t%)1/2

Therefore, the radius of curvature: p =

12. In cylindrical coordinates, the position vector OM = (t? + 2)ﬁp + 2tk with 8 = 2¢

o Calculate its speed and acceleration in the base (ﬁp_ﬁe,ﬁ)

o Calculate its speed and acceleration in the base (7,7, k)

e The velocity vectoris V = pu, + pOug + 7k = 2td, + 2(t* + 2)udy + 2k

e Theacceleration vectoris @ = (5 — p62)u, + (296 + pf)tg + 7k
d = —(4t* + 6)u, + 8ty

e Because U, = Icosf + jsinf and Uy = —Isinf + jcosf -
V = 2[tcos(2t) — (t2 + 2) sin(20)]T + 2 [tsin(2t) + (t2 + 2)cos(20)]] + 2k
a = —[(4t? + 6)cos(2t) + 8tsin(2t)]T — [(4t? + 6)sin(2t) — 8tcos(2t)]j

13. We give the parametric equations of the plane trajectory of a moving point with respect to a
Cartesian frame of reference : x = 3t and y = 2t? — 3t
o Determine the equation of the trajectory, What is its shape ?
o Calculate the speed of the mobile
o Show that its acceleration is constant
o Determine the normal and tangential components of the acceleration in a Frenet’s
frame and deduce the radius of curvature.

2
. x:3t—>t=§—>y=5x2—x

— the trajectory is a parabola.
e The speed of the mobile : v, (t) = % =3and v, (t) = % =4t —3
The speed module : |¥| = V16t2 — 24t + 18 m/s

e The acceleration of the mobile : a, (t) = % =0 and a,(t) = % =4
The acceleration of the mobile is constant : |d| = 4 m/s?

e In Frenet's frame, the tangential acceleration : a;(t) = %fl = \/%
The normal acceleration : ay(t) =/ a? —a;? = \/ﬁ

e The radius of curvature: p = % = M

14. Convert the Vector 4 = A7 + A,y
to polar coordinates from Cartesian coordinates :
e Wehave: U, =icosf +jsinf and Uy = —isinb + jcosH

- T =1,cos0 —Ugsind and ] =u,sind + uycosh
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g Er Eg Er
M Y M
r r x = rcosf
v =rsinf
g 8
o X ] X

A = A, (t,cos6 — tpsinb) + A, (U,sinf +dgycosh)

A= (AxcosO + Aysin®)u, + (Aycosd — Asind g = AU, + Aglig
Therefore,

Ay = Axcos + Ay sinb

{ Ag = Aycost — Aysinb

15. Convert the Vector 4 = A, 7 + Ayj+ Ak
to spherical coordinates from Cartesian coordinates.
e We have:
U, = lcos@sind + Jsingsind + kcos6
U, = —Ising + jcosp

=l

g = lcospcost + Jsinpcosd — ksind
Z = rﬁr + A(pﬁ(p + Agﬁg
Ay = Apcos@sing — A,sing + Agcospcost
Ay = Aysingsing + A,cosg + Agsingcoso
A, = A,cos8 — Agsind
By inverting the coordinates, we get :
A, = Aycospsing + Ay singsing + A,cos6
Ag = Axcospcost + Ay sinpcost — A,sind
Ay = —Aysing + Aycosp

0
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Chapter 3

The relative movement

Let us consider a mobile M and the following two Cartesian coordinate systems: R (O, X, Y, Z ), assumed
to be fixed, which is called absolute coordinate system and R ' (O’, X, Y/, Z'), in any motion with respect
to R (O, X, Y, Z), which is the relative coordinate system.

3.1 Absolute movement:
The movement of the mobile M considered with respect to the absolute reference R (O, X, Y, Z) is

characterized by the quantities :
e the position vector OM = 7 = xT + y] + zk
e the absolute velocity V, = == X1+ 9] + 2k

B | A
e the absolute acceleration a,; = o xttyt zk

derivations are performed in R in which the base(%, ], k) is invariable.

3.2 Relative motion:
The movement of the mobile M considered with respect to the reference R’ (O, X, Y', Z'), is

characterized by the quantities :

e the position vector O'M = (#'|R") = x'T' +y'] + 'k’

. oo ar - e T
e the relative velocity V,, = (d—rt RY=xT"+y] +2'k

. . - dV ° ) 7
e the relative acceleration a, = (d—tr R)Y=xT+y'] + 7'k’

> 2

the derivations are made in R' in which the base(7, j ,E’) is invariable.

OM=00"+0'M

F=h 47

3.3 Composition of the velocity vectors:

The Chasles relation allows us to write : OM = 00’ + O'M
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OM=¢,+7 =F+xT +y] + 7k
__dOM _ d00/ | dO'M _ di, , dF’

So the absolute velocity \7

dat ~  dt dt dat = dt
V, = (dr° ’dl+y’d’ +Z’%) +X7 +y'] + 2K
V,=V,+V,
with training velocity V, = %" + x' di -t y’ a’ —+ 7' — wh|ch represents the velocity of the reference R’

with respect to the reference R . The first termi—t represents the translational velocity of the origin O’
with respect to R and the second term translates the change of orientation of the mobile frame R ' and
relative speed V, = x'7' + y'J' + z' K
Let be 2 the vector representing the angular velocity of the change of orientation of the mobile frame
R’ with respect to the fixed frame R. The training and relative velocities \79 and \7; are expressed by :
V, = (V(0")|R) + CAG'|R)
Vo= (5

3.4 Composition of the vectors accelerations:

The absolute acceleration defined in the reference R is :

- dav,
o =
> d?t, ,d 4 7 ,—>/ M o ar’ i aj’ , dk’
aa—(dt2+ dt2+y dt2+ dt2)+(x +y'7 +zk)+2(xE+yE+ E)
a, =a,+a,+a4a,
itha, = (Lho 4 &0 L &7 ting the t leration of th t
Wi dp, = (dtz ac? y a2 Z dtz) representing the ralnlng acceleration o e pom

coinciding with respect to the absolute reference R.
a, = (x'T +y'J" + Z'k") representing the relative acceleration, and
I T | . | 2 . - :
c=2(x Ytz E) is a complementary acceleration, called Coriolis acceleration.

These accelerations can be expressed as a function of the vector 7} representing the angular velocity of
the change in orientation of the mobile frame R ' relative to the fixed frame R by :

59 = @(0)|R) + (BAF|R") + BAGAF|R)
= @l

a. = 20A(V,|R)
It can be concluded that if two frames are in uniform rectilinear translation with respect to each other,

then the accelerations of a material point M measured in one or the other of these frames are equal;
this type of frames are called “Galilean frames”.

We can also conclude that if the moving frame R'is in translation with respect to the fixed frame R or if
the moving body M is fixed with respect to the moving frame R’, the Coriolis acceleration is zero.
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Exercises :

1. Aswimmer crosses a river, of width L = 0.25 km, from one bank to the other, perpendicular to the
current, at a constant speed v=2 km / h . The speed of the currentis V=1 km / h. These speeds
are measured in relation to an observer placed on one of the banks.

O

O

What is the trajectory, the speed of the swimmer and the time taken to reach the other shore.
What should be his direction of departure if the swimmer wants to reach a point directly

opposite to the other bank. Deduce the time taken to reach the opposite bank in this case.

The swimmer is deflected by an angle B from his initial direction such that : tanf = % =1

2
V,=V,+V, =Vi+v]
The absolute velocity module |Va| =VV2 +v2
The position of the swimmer is : vJ
x=Vt and y=vt Vi

Its trajectory is a straight line : y = Ex B

The time taken by the swimmer to reach the other shore :
T==0125h

v
The distance travelled :

D= [V,|r =L |1+2 = 0125V5 km
v

To reach a point directly opposite the other shore, the absolute velocity Va must be
perpendicular to both shores with a magnitude :

|\7a| =+Vv2-V2
The swimmer's speed must be oriented opposite the current with an angle a :
; vV . 1 T
a = arctan —— = arctan— = —
vZ—V2 V3 6
. . p_ L 025
The time taken to reach the opposite bank T° = oo h

2. A mobile is described by the position vector in a fixed frame R by OM = 3t + t37+ (3t + 4)E

and by O'M = (2 — 30)7" + (t2 — t)j’ + tk' in a mobile frame R’. The latter is in rectilinear motion
with respect to R.

O

O

O

Determine the absolute velocity and the relative velocity of M.
Deduce the driving speed and the nature of the motion of R' with respect to R.
Determine the absolute acceleration and the relative acceleration of the mobile M.

absolute velocity V, = d;)—tM =37+ 2tj + 3k

O =30+ 2t -1 +F

Since the two frames are in rectilinear motion from each other :
- = - -7 > —)[
i=7, j=J] and k=k

Using the velocity decomposition relation :Va = \76 + V.,

relative velocity V, =
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Therefore the training velocity is: V, = V, — V.. = 67+ j + 2k

Its modulus |V,| = V4T is constant and independent of time t.
So the motion of R' with respect to R is a uniform rectilinear motion.

. , ~ _ay, -
The absolute acceleration of mobile M : a, = d_: =2
. . . - av, 5
The relative acceleration of mobile M : a,. = d—tr R =2j

a, = a, because the motion of R' with respect to R is a uniform rectilinear motion.

3. Amobile is described by the position vector in a mobile frame R’ by :

O'M =5t + (2t — t)] — 2tk’. This reference is in rectilinear translation movement of velocity

vector V, = 2t7 + J + k with respect to a fixed reference R.

O

@)

Find the expression of the absolute speed of M with respect to the frame R.

Deduce the position vector of M in the fixed frame R, knowing that at timet=0, M s at the
point (0, 1, -2) in the frame R.

Calculate the relative acceleration a, and absolute acceleration a, of the mobile M.

Relative velocity V. = dloi'tM =50+ (4t — 1)) — 2k’

Since the two frames are in rectilinear motion from each other :
I=7, j=j and k=K'
Using the velocity decomposition relation :Va = _)e _)r

Then the absolute speed V,,(t) = (2t + 5)7 + 4t] —
the position vector of M in the fixed frame R :

OM(t) = 0M(0) + [, Vo ()dr = J — 2k + (t? + 50)7 + 2t%] — th
So, OM(t) = (t2 4+ 56)T+ (2t2 + 1)] — (t + 2)k

avel o _ 4o
- |R) =4

+
k

The relative acceleration is: a, = (

" A"/ s s
The absolute accelerationis: a, = d—t" =21+ 4

We can verify that for this case : a, = a, + a, becausea, = 0

4. A moving frame R' (OX', QY', OZ) is rotating relative to a fixed frame R (OX, OY, OZ) following
the OZ axis with a constant angular velocity Q .
A mobile M moves on the line OX' according to the law : X’ = Acos{lt, where A is a constant.

O

Determine the relative speed and the training velocity of M by their projections in the moving
frame X'OY' at time t as a function of A and Q.

Deduce the absolute velocity expressed in this same projection base.

Show that its modulus is constant.

Determine the relative acceleration, the training acceleration and the Coriolis acceleration of M
by their projections into the moving frame X'OY' at time t as a function of A and ().

Deduce the absolute acceleration expressed in this same projection base, and show that its
modulus is constant.
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e OM(t) = AcosQt’ and 2 = Qk’
Knowing that : 7' = cosQtT + sinQtj, J' = —sinQtl + cosQtf and k' = k

dOM(t)
dt

R’) = —AQsinQt’’

The relative velocity \7; = (

V, = —AQsinQt[cosQtT + sinQtj |
The training velocity V, = (V(O’)|R) + OAG'|R) = 0 + Qk'AAcosQt 7
V, = AQcosQt]’ = AQcosQt[—sinQt? + cosQtj]
e absolute velocity V, = V, + V, = AQcosQt]’ — AQsinQt?” = AQ[—sinQtl’ 4 cosQt]’]
It can be verified that : V, = AQ[—sin2Qt7 + cos2Qt]]
|\7a| = AQ, the modulus of the absolute velocity is constant.
av,

e The relative acceleration a, = 7 R") = —AQ?cosQtl’

a, = —AQ%cosQt[cosQtl + sinQtj]

The training acceleration a, = (@(0')|R) + (EA?'lR’) + OA@AP'|R)

d, = 0+ 0 + 2k'A(Qk' AAcosQt 7' = —AQ2cosQtT’

a, = —AQ%cosQt[cosQtl + sinQtj]

Coriolis acceleration a, = 2BA(V,|R") = 20k’ A(—AQsinQt?") = —2402sinQtj”
a, = —2AQ2sinQt[—sinQtl + cosQtf]

The absolute acceleration : a, = a, + a, + a,

a, = —2A0%cosQti’ — 2A02sinQt)’

a, = —2A0%[cos20tT + sin2Qtj]

. N\
We can verify thata, = d—t“

|a,| = 2A0?, the modulus of absolute acceleration is constant.

5. AframeR'( OX', OY', OZ) rotating relative to a fixed R (OX, QY , OZ) along the OZ axis with a
constant angular velocity Q . A mobile M moves on the line OX' according to the law :
W(t) = Ate®'T’, where A is a constant.
o Determine the relative, training and absolute velocities.
o Determine the relative, training, Coriolis and absolute accelerations.
ar
dt
e training velocity V, = (V(O’)|R) + OAFR) = 0 + Qk'NAte®? = AQte®'],
Knowing that : 7' = cosQti + sinQtj, J' = —sinQtl + cosQtf and k' = k
absolute velocity Va = \79 + Vr
V, =[—QtsinQt + (1 + wt)cosQt]Ae® T + [QtcosQt + (1 + wt)sinQt]Ae®t]

e relative velocity V, = ( R’) = A(1 + wt)e®?

R) = Aw[(2 + wt)]e®tT

e The relative acceleration a, = (dd—‘zr
a, = Aw[(2 + wt)]e® [cosQtl + sinQt)]
The training acceleration a, = (d(0")|R) + (EA?’lR’) + OA@AF|R)
A, = 0+ 0 + QK'AQK' NAte®t? = —AQ02te®t T = —AQ2te®t [cosQtT + sinQtj]
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Coriolis acceleration a, = 25/\(\7}|R’) = 20k'NA(1 + wt)e®tT

a, = 20A(1 + wt)e®'] = 2QAe“t (1 + wt)[—sinQtl + cosQtf]

The absolute acceleration : a, = a, + a, + a,

a, = Ae“{[(w? — 0%t + 2w)][cosQtT + sinQt]] + [2Q(1 + wt)][—sinQtl + cosQt]]}

We can verify that 2, = % with V, = (dort(t) R) and OM(t) = Ate®t[cosQti + sinQtj]

6. A marble falls without initial velocity from a building of height H. Its fall is free according to

a uniformly accelerated movement of acceleration g.

O

What is the trajectory of the ball in a reference frame linked to a car moving in a rectilinear and
uniform movement of speed v and passing vertically when it is released ?

What is the trajectory of the ball in a frame of reference linked to a car moving in a uniformly
accelerated rectilinear motion with acceleration a and passing to the falling vertical at the
moment of release ?

The distance traveled by the ball in its free fall after atimetis:z =H — %gt2

The distance traveled by the car with a constant speed during the same time t is

x =vt

By elimination of time, we obtain the equation of the trajectory of the ball with respect to the
moving frame linked to the car :

z=H— %gxz; the trajectory is therefore a parabola.

. I . . 1

The distance traveled by the ball in its free fall after a timetis: z = H — Egt2
The distance traveled by the car moving in a uniformly accelerated rectilinear motion of
acceleration a during the same duration t is :

1
x = -at?

2
By elimination of time, we obtain the equation of the trajectory of the ball with respect to the
moving frame linked to the car :
z=H— %x; the trajectory is a straight line.

7. Two mobiles A and B move in two rectilinear paths with the respective speeds :
Vo=20m/s and Vg=30 m/s.

O

Determine the relative velocity vector of A with respect to B when the two mobiles are rolling in
the same direction.

Determine the relative velocity vector of A with respect to B when the two mobiles are rolling in
opposite directions.

Determine the relative velocity vector of A with respect to B when the two mobiles are now
rolling on two paths which intersect forming an angle of 60° between them.

The relative speed of A compared to B : VA/B = VA - VB

U and V two unit vectors parallel to the two straight tracks.

The two mobiles roll in the same direction : U = V

So, V5 = 206 — 30U = —10d
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e The two mobiles roll in opposite directions : U = —V
So, Vs /5 = 201 + 30U = 501
e The two mobiles roll on two tracks which intersect forming an angle of 60° between them :

Va

/

“"rA /B

Vs

Vyp =200 —30V - |V,/5| =202 + 302 — 2x20x30c0s60 = 10v7 m/s

The direction of the relative velocity vector ‘7,4/3 is defined by the angle asuch that :

Vv V . [/ . 3 . 33
M sl gina =A%l gineo= 2 - & = arcsin (i)
sin60  sina [Va,5] 27 27
a=~ 79.11°

8. Snowflakes fall vertically with a speed of 30 m/s.
o With what speed do these flakes hit the windshield of a car traveling with a constant speed of
40 m/s on a horizontal track.
e The speed of the car relative to the ground represents the training velocity.
The speed of the snowflakes relative to the ground represents the absolute velocity.
The speed of the snowflakes relative to the car represents the relative velocity.
V,=V,+V, » V., =V, -V,
A

V.

V. V.
The track is horizontal :
V,=-30f and V, =40 » V. = —407 —30]
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V.| = v/402 + 302 = 50 m/s

v, 4
Flakes fall atan angle : @ = arctanv—e = arctan; = 53.13°
a

o With what speed do these snowflakes hit the windshield of a car traveling with a constant speed
of 40 m/s on a track with an upward inclination of an angle of 30° :

° Va=‘7€+‘77‘ - ‘71, =‘7a—‘—ie

V, = —307 and V, = 40cos307 + 40sin30] — V, = —20/37 —50]
V.| = 1037 m/s

Flakes fall at an angle : a = arctan¥ ~ 34.720

o With what speed do these snowflakes hit the windshield of a car traveling with a constant speed
of 40 m/s on a track with a downward inclination of an angle of 30° :

—

o V,=V,+V, > V, =V, -V,

_“.I’F|

=l

V, = —30f and V, = —40c0s307 — 40sin30j — V, = —20v37 — 10
|\7r| =10V13 m/s
Flakes fall at an angle : a@ = arctan2v3 ~ 73.90°

9. The movement of a ship is in the West direction relative to the land at a speed of 10 km/ hr. Its
movement takes place in the direction of North 30° West at a speed of 8 km/ hr relative to the water.
o Calculate the speed and direction of the water current relative to the land.
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. \7a is the absolute speed of the boat with respect to the land, \76 is the speed of the water
current with respect to the land, and \7} is the speed of the boat with respect to the water :
V,=V,+V, - V, =V, -V,

5

o Tl = IVl V17— 2[Vol[V cos60 = VBEkm/hr

The direction of the drive velocity vector \73 is defined by the angle a such that :

Vel _ IV R _2 _ 2
s e | Sina= A sin60 = % — a=arcsin (ﬁ)
a =~ 49.11°

10. A square OABC of side L rotates around its side OA at constant angular velocity w . A point
material M moves along BC from B with a constant acceleration a and an initial speed V, at point B.
Z|Z

A

Calculate the absolute velocity and the absolute acceleration of the material point M.
Determine the relative velocity, the training velocity of the material point M.
Calculate its absolute velocity.

O O O O

Determine the relative acceleration, training acceleration and Coriolis acceleration.
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Deduce its absolute acceleration.
The position vector relative to the absolute coordinate system :

OM = 0C + CM = L¥' + (L — )k withx = At? + Vt

Lodl ag
Using : — = wJ and =l
T doM ar’ 1 = T
Absolute velocity V, = —== L— — (At + Vp)k = Lwj' — (At + Vy)k
. - d‘_/)—,; 221 =4
Absolute acceleration a, = - = —Lw“t’ — Ak
Relative velocity \7} = % = % = —(At + Vo)i(
. . . ST _ dm — T’ _ =4
The training velocity V, = o + wAO'M = Lwj
Absolute velocity \7‘1 = \7r + \76 = Lwj’ — (At + Vo)f(. We find the same result.
Relative acceleration a, = % = -4k
29’0 — o L — -> N N
The training acceleration a, = % + BA(BAO'M) + i—f/\O’M = wkALw] = —Lw?T’

Coriolis acceleration a, = 2wAV, = 0

Absolute acceleration @, = &, + a, + a, = —Lw?T’ — AK. We find the same result.
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Chapter 4

Dynamics

Dynamics is the analysis of the relationship between forces applied to a body and changes in the motion
of that body. It explains the relationship that exists between the forces and the other kinematic
quantities.

4.1 Galilean frame:

A Galilean frame is a frame consisting of a self-free system at rest or in uniform rectilinear motion.

Any reference frame in uniform rectilinear translation with respect to an other Galilean reference frame
is itself Galilean.

4.2 Force:
A force is defined by a line of action, a direction, a point of application and an intensity.
There are two types of forces :

= Remote interaction forces such as :

Gravitationnal force : F = G”;—T
Electric force : F = qf , F= k%
T

11151
2nr

Magnetic Force : F = gUAB , F = 1
= Contact forces such as:

Friction force : F = uN

Elastic forces : F = K(L — Lg)

4.3 Momentum:
The momentum of a particle is a vector quantity defined by the product of its mass and its
instantaneous velocity vector : p = mv

The momentum of an isolated system is conserved.
A free particle always moves with a constant momentum.

4.4 Fundamental law of dynamics:

The fundamental law of dynamics is given by Newton's laws :
=  Principle of inertia : In a Galilean reference frame, the center of inertia of any mechanically
isolated material system is either at rest or in uniform rectilinear motion.
= Fundamental principle of dynamics : In a Galilean reference frame, the vector sum of the forces

applied to a point M of mass m and its acceleration a are linked by : ma = Zi_ﬁ:
= Principle of action and reaction : The force exerted by a first body on a second body is equal and

opposite to the force exerted by the second on the first : I?AB = — I?BA

4.5 Generalized Fundamental principle of dynamics:
The variation of the momentum of a body with respect to time is equal to the resultant of the external

forces applied :
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ap -
- = uif

4.6 The moment of a force:

The moment of a force applied to a material point located at point M, with respect to the fixed point O
is defined by :

M, =OMAF
4.7 The angular momentum:

The angular momentum of a material point of mass m and velocity ¥, with respect to the point O is
defined by :

- — g

L, = OM Amv = OMAp

4.8 The angular momentum theorem:

The derivative of the angular momentum of a material point M with respect to a fixed point O in a
Galilean reference frame is equal to the sum of the moments with respect to the same point O of the
external forces applied to the point M :

dlL,  « ~7
— = LiMip
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Exercises :

1. A body (M) of mass m moves along the position vector :
7= (24300 —t3+ (3t — Dk

o

o

(0]

o

Find the force F acting on the body.
The moment T of F with respect to the origin O.

The momentum of P the body and its angular momentum L with respect to the origin O.
dL

dt

According to the fundamental principle of dynamics:

F=md= L 27— 6t))
—ma—mdtz—m(L ]

Check that : F = % and T =

-

The moment T of F with respect to the origin O is equal :

—

S { J k
T=O0MAF =12 +3t) —t3 (3t-1)
2m —6mt 0

7 = 6mt(3t — 1)7 + 2m(3t — 1)] — 2mt2(2t + 9k
The momentum P is equal :

—

— — dr - - 7
p = mv¥ = m— = m[(2t + 3)T — 3t?] + 3k]

dt
The angular momentum Lwith respect to the origin O is equal :
7 i k
L,=OMAp=|[(t2+3t) —t3 (3t—1)

m(2t +3) —3mt? 3m
L, = 3mt2(2t — 3)T+ m(3t? — 2t — 3)] — 2m(2t + 9k
We can verify that :

Z_f = m[27 — 6t]] is equal to the force F.
% = 6mt(3t — 1)i + 2m(3t — 1)] — 2mt?(2t + 9)k is equal to moment z.

2. Two bodies (M1) of mass m;and (M2) of mass m,are placed in contact on a horizontal table.
The static and dynamic coefficients of friction between the bodies (M1), (M2) and the contact

surface are respectively p; and p,. A force F forming an angle 8 with the horizontal and of constant

modulus, is applied to the body (M1) :

N: _
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O O O O

Determine the maximum modulus of force F required to move the two bodies.

Write the fundamental dynamic relation for each mass in the case of motion.

Deduce the acceleration @ of the system.

Determine the contact force between the two bodies.

The mass (M1) being in static state is subjected to the forces: f, its weight 1_51, the reaction of
the table ﬁl, the reaction of the mass (M2) ﬁlz and the force of static friction fsl :

F+P +N,+R,+fy =0

The mass (M2) being also in static state is subjected to the forces : its weight f’)z , the reaction of
the table ﬁz, the reaction of the mass (M1) ﬁ21and the force of static friction f;z :
P,+N,+R, +f,, =0

By projecting these two equations onto the horizontal OX and vertical OY axes :

OX:Fcos@ — Ry — fe1 =0

Ry1—fs2=0
OY_FSan_Pl‘l‘Nl:O
—P2+N2:0

Principle of action and reaction : Ry, = Ry,

fs1 = usNy = pg(Fsind + Py) = pg(Fsind + my g)
and fs = UsN; = psPy = psmag

FcosO — us(Fsin@ + myg) — ugm,g = 0

So: F=—+t"——(m; +my)g

cosO—pugsind

the fundamental relation of the dynamics for each mass in the case of motion :
The mass (M1): F + B, + Ny + Ry, + f4; = m,a,
The mass (M2) : P, + N, + Ry + f4, = m,a,
By projecting these two equations onto the horizontal OX and vertical OY axes :
OX:Fcos@ —Ryp — fg1 =My

Ry1 — faz = mya,
OY:—Fsinf —P; + N; =0

—P,+N, =0
far = ualN1 = pg(Fsind + Py) = pgq(Fsiné + my g)
and fu; = palNy = ugPy = pamyg
Principle of action and reaction : Ry, = Ry,
The mass system (M1) and (M2) moves with the same acceleration:a; = a, = a

FcosO — puy(Fsind + myg) — ugmyg = (my + my)a
F(cosO—pugsin@)—pg(mq+my)g

So the acceleration of the two massesis: a =
(mq+my)

The force of contact between the two bodies R, = Ry; = R
my

R=mya+ fz =my(a+puqg) = (cos@ — ugsind)F

(my+my)
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3. Two bodies (M1) of mass m; and (M2) of mass m,are connected by an inextensible wire passing
through a pulley of negligible mass (see figure). The static and dynamic coefficients of friction
between the body (M1) and the contact surface are ug and u, respectively.

N,
¥, - Lt
[ = C
0 X ‘

P, T

Study the condition of static equilibrium of the two bodies (M1) and (M2).
Study the motion of the system.

o O O

Calculate the tension of the thread connecting the two bodies.

The mass (M1) being in static state is subjected to the forces : its weight ﬁl, the reaction of the
contact surface ﬁl, the tension of the wire T)l and the force of static friction fs :
P,+N,+T, +f, =0
The mass (M2) being in static state is subjected its weight 1_52 and the tension of the wire T‘)z :
P,+T,=0
By projecting these two equations onto the horizontal OX and vertical OY axes :
oX:Ty—f,=0
OY:—P,+N;, =0
-P,+T,=0
The wire is inextensible and the pulley is of negligible mass - T, =T, =T
fs = usNy = usmqy g
- myg—f=0 ->my—pusm; =0
Therefore, the static equilibrium condition of the two bodies (M1) and (M2) is :
mp = Usmy
o the fundamental principle of dynamics for each mass in the case of motion :
The mass (M1): P, + N; + T, + f; = m,a,
The mass (M2) : B, + T, =m,a,
By projecting these two equations onto the horizontal OX and vertical OY axes :
OX:Ty — fg =maq
OY:—-myg+N; =0
-myg + T, = —mya,
The wire is inextensible and the pulley is of negligible mass - T; =T, =T anda; =a, =a
fa = taN1 = pgmy g
(mg —pgmy)g = (my + my)a
Therefore, the system acceleration is :
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_ (my — uamy)
(my + my)

e The thread tensionTis:
mymy(1+ pg)
T=myg—-—a)=——"""-—
(my +my)
4. A material point (M) of mass m moves without friction on the inclined surface of a block (B). This

last moves on the horizontal with a constant acceleration y. Knowing that the initial velocity of the

material point (M) is zero with respect to the block (B ) :

Study the motion of (M) in the moving frame R".

Determine the reaction of the block (B) on the mass m.

Deduce the acceleration ¥ for the material point (M) to rise from the inclined plane.
By applying the fundamental principle of dynamics in the moving frame R':
P+N+FE, +F =ma,

where ﬁe = —mYy is the driving inertial force and ﬁc = 0 the Coriolis inertial force.
By projecting on the OX and OY axes :

mgsind — mycosd = ma, - a, = gsind —ycosfd

—mgcosd + N —mysinf = 0

e The reaction of the block (B) on the mass m : N = m(gcos6 + ysin8)

e The material point (M) rises from the inclined plane - N =0

gcosf +ysind =0 — y = —gcotan

The block (B) must move with an acceleration directed to the left.

o O O

5. A material point (M) of mass m moves without friction inside a circular surface of radius R and center
0. The mass m is launched from A with an initial velocity v,.
Using the Fundamental Principle of Dynamics :
o Determine the expression for the speed of the mass m.
o Determine at what angle the velocity vanishes.
o Deduce the expression of the reaction N of the surface on the material point (M).
Applying the angular momentum theorem :
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o Find a differential equation governing 6 (t).

v, -
e By applying the fundamental principle of dynamics :
P+N=ma
Using polar coordinates :
m|(# —r02)d, + (270 + r)udg] = (mgcosd — N)u, — mgsinfuy
Sincer=R - 7r=¥=0
mR6O? = —mgcos6 + N
{ RO = —gsinb
dv

The velocity v = RZ—? =RO - i R6 — wvdv = —gRsinfdo

v 6

1

J vdv = -f —gRsinfdf - 5(172 —v4%) = gR(cosf — 1)
Ca 0

The expression for the velocity is then :

v = \/vs2 — 2gR(1 — cosB)

2
e The object stops and velocity vanishes:v =0 — cosf8 =1— %
6 = o
= arcos( ZgR)
e The reaction N of the surface on the material point (M) :
. 2
N = mR6? + mgcos = m% + mgcos6
v42 — 2gR(1 — cosH) v42 — gR(2 — 3cos0)
N=m + mgcosf =m
R R
e The angular momentum theorem : f.o =0M A p = OMAmv
OM = —RU, et V=l

-

SoL, = —mRvk
The moment of forces : ﬁo = OM AF

M, = OM A(P + N) = —Ru,A(mgcosf — N)U, — mgsinfy = mgRsink
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o — dv s dv )
P Z M, - —mREk = mgRsinfk - Py —gsin

We find the same result.

6. A particle of charge q and mass m, moving with a velocity ¥ in an electromagnetic field : an electric
field E = ET and a magnetic field B = Bj, undergoes a force of the form : F= q(f + 17/\§).
We assume E and B constants in modulus and direction. Initially, the particle is at the origin with zero
initial velocity.
o Study the motion of the particle and find the differential equation of motion.
e By applying the fundamental principle of dynamics for the particle:
md = q(E +DAB) — m(ii+jj + 2k) = q[ET + (i + yj + 2k)ABj)
m(%T + jj + 2k) = q[ET + B(xk — y1)] = q{(E — By)i + Bik}
. q .
mi = q(E — Bz) X =—(E—Bz)
my =0 - y=0
mzZ = qBx 5 =9B%
m
Because x(0) = y(0) =2z(0) =0 et x(0)=y(0)=2(0)=0
y(@©) =0
z=2px - i=L1(E-L1p%) - i+@x=1f
m m m
It can be shown that the solutions of the differential equations x(t) and z(t) are :

x(t) = ——cos( )+—

qB?

Z(t)———sm( )+ t

7. An automobile with a mass of 1000 kg enters a circular curve of radius R = 100 m.
o Iftheroad is not inclined, what must be the coefficient of static friction between the tires and
the road to prevent the car from sliding with a speed v =25 m/s.
What is the inclination of the roadway to allow a speed of 25 m/s in all weathers (No friction).
If the pavement is raised by 30°above the horizontal and the coefficient of static friction is
Us = 0.1, find the value of the maximum speed at which the automobile can travel without risk.
e The pavement being horizontal, the automobile is subjected to the forces: its weight P, the

reaction of the surface N and the force of static friction on the tires fs :

—_

N

Centre ———

g . 0

—_

P
By applying the fundamental principle of dynamics for the automobile :
P+N+f,=ma
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The motion being uniform and circular, the acceleration a is oriented towards the center of the
2
curve with a magnitude a = %

By projecting the equations on the radial OX and vertical OY axes :
OX:fs =ma

OY:—P+N=0

fs = usN = usmg

Therefore usmg = m%z - Ug =
N.A: u, = 0.625

In the absence of friction, the pavement is inclined at an angle 6 :

v2

Rg

Centre
3]
. __

The automobile is subject to the forces of its weight P and the reaction of the road surface N :
By applying the fundamental principle of dynamics :

P+N=m3

The movement being uniform and circular, the acceleration a is oriented towards the center of

2
. v
the curve with a module a = =

By projecting the equations on the horizontal and radial OX and vertical OY axes :
OX: Nsinf = ma
OY:—P + Ncosf =0

2

m v
- N="L mgtand = ma = m—
cos6 R

v? v2
tand = — — 6 = arctan (—)
Rg Rg
N.A : The inclination 8 ~ 33°
The pavement being raised and the static friction on the tires is present : The automobile is
subjected to the forces : its weight 1_5, the reaction of the surface N and the force of static

friction on the tires fs :

By applying the fundamental principle of dynamics for the automobile :

P+N+f, =ma

The movement being uniform and circular, the acceleration a is oriented towards the center of

2
. v
the curve with a module a = =
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30°

By projecting the equations on the radial OX and vertical OY axes :
OX: Nsinb + f;cos6 = ma

OY:—P + Ncosf — f;sinf = 0

fs = usN

- N=—F
cos0—pugsinf
o 2= sinf+ugcosd
cosO—pugsind

So the maximum speed at which the automobile can drive without risk is :

_ \/sine + uscosl

mg

R
cos0 — ugsinf 9

N.A:v = 26.54m/s

8. Find the accelerations of the bodies in the figure below neglecting the frictional forces, the masses of
the pulleys and those of the wires which we consider as inextensible.

By applying the fundamental principle of dynamics for the three masses separately :
Mass M1 : Fl + T)l = mlal
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By projecting on the ascending axis : —m;g + Ty = mya,
Mass M2 : P, + T, = m,a,
Acceleration a, = a,, + a, where @, = a'; = —a, is the training acceleration
By projecting on the ascending axis : —m,g + T, = m,(a,, — a;)
Mass M3 : P; 4+ T; = m3a;,
Acceleration a; = a3, + a, where a, = @'y = —a, is the training acceleration
By projecting on the descending axis : m3g — T3 = mz(as, + a;)
Since the pulleys are of negligible mass and the wires are inextensible:

= Ay =0Q3, =0, Ty, =T'1 =T, +T; and T, =T3 =T
The three projections become:

-mqg + 2T = miqq

—myg + T =my(a, — a;)

mzg —T =mz(a, +a;)
It is a system of three equations with three unknowns a;,a, and T :

( 4m;mz —mym, —mymy
al =

mym, + myms + 4myms
2(mymz —mym,)

a, =
" omymy, + mymg + 4mymg

4m,my
T = mg
mym, + myms + 4mpyms
We notice that if m, = mg; the relative acceleration a, vanishes.

. . mom
We also notice that if m; = —2—
m2+m

; absolute acceleration a, vanishes.
3
9. Study the static case and the dynamic case of the two bodies in the figure below, neglecting

the masses of the pulleys and those of the wires which we consider as inextensible.

The static and dynamic coefficients of friction between the bodies (M1) and (M2) and the surface of

contact are ug and ug respectively.

E‘ﬂ

= Static case:
The mass (M1) being in static state is subjected to the forces: its weight l_))l, the reaction of the
surface ﬁl, the tension Tl and the force of static friction Fls :
P,+N, +T, +f, =0
By projecting on OX; and OY; axes :
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OX;:mygsina —T; — f1,=0

OY,;: —mygcosa +N; =0 —» N; =mygcosa

The mass (M2) being in static state is subjected to the forces : its weight ﬁz, the reaction of the

surface ﬁz, the tension Tz and the force of static friction fzs :

P,+N,+T,+f,, =0

By projecting on OX, and QY, axes :

OX,:T, — f,,,=0

OY,:—myg+N, =0 — N, =myg

knowing that fi5 = usNy = psmygcosa and frs = usN; = psmyg

and T; = T, = T because the threads are massless and inextensible.

The static equilibrium condition is : m; (sina — uscosa) = pusm,
=  Dynamic case :

By applying the fundamental principle of dynamics for the two masses separately :

Mass M1:P; + N; + Ty + f14 = my3;

By projecting on OX; and QY axes :

OX1:mygsina —T; — fig = My

OYl:—-mygcosa+ N, =0 — N; =mygcosa

Mass M2 : P, + Ny, + T, + foy = m,3,

By projecting on OX; and QY, axes :

OX2:T, — foq0 = mya,

OY2:—myg+ N, =0 —> N, =myg

fia = HalNy = pgmygeosa and foq = pgN; = pgmyg

Since the threads are massless and inextensible —» a; =a, =a and Ty =T, =T
(sina—pgcosa)my—pugm,

The system accelerationis: a =
m1+m2

(sina—pgcosa+pug)mym,

The thread tensionis: T =
mq+m,

10. Study the static case and the dynamic case of the two bodies of the figure below, neglecting
the masses of the pulleys and those of the wires which we consider as inextensible.
The static and dynamic coefficients of friction between the bodies (M1) and (M2) and the surface of
contact are ug and p, respectively.
= Static case:

The mass (M1) being in static state is subjected to the forces : its weight l_))l, the reaction of the

surface ﬁl, the tension Tl and the force of static friction Fls :
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PB,+N, +T, +f, =0
By projecting on OX; and OY; axes :
OX1:mygsina—T; — f15,=0
OYl:—mygcosa+ N, =0 — N; =mygcosa
The mass (M2) being in static state is subjected to the forces : its weight ﬁz, the reaction of the
surface ﬁz, the tension T‘)Z and the force of static friction fzs :
P+ N, + T, +f,, =0
By projecting on OX, and QY, axes :
OX2:—mygsinf +T, + f,5, =0
0Y2:—mygcosf + N, =0 — N, =m,gcosf
knowing that f;5 = usN; = ugmygcosa and f,; = ugN, = pusm,gcosf
and T; = T, =T because the threads are massless and inextensible.
The static equilibrium condition is then : m, (sina — pscosa) = m,(sinf — uscosp)
Dynamic case: We are confronted with two cases :
»  my(sina — uscosa) > my(sinf — ugcosf)

— The mass M1 is descending and the mass M2 is ascending :
By applying the fundamental principle of dynamics for the two masses separately :
Mass M1: P, + Ny + T, + f14 = m;a;

By projecting on OX; and OY, axes :

OX1:mygsina —T; — f1g = miay

OYl:—-mygcosa+ N, =0 - N; =mygcosa

Mass M2: P, + N, + T, + f,4 = m,a,

By projecting on OX; and OY; axes :

OX2:—mygsinf + T, — o4 = Mmya,

0Y2:—mygcosf+ N, =0 = N, =m,gcosf

fia = ualN1 = pgmigcosa and  frq = pgN; = pgmpgcosp

Since the pulley and wires are massless and inextensible - a;, =a, =a and T, =T, =T
(sina—pgcosa)m,—(sinB+ugcosp)m,

The system accelerationis: a =
m1+m2

»  my(sina — uscosa) < my(sinf — ugcosf)
— The mass M1 is ascending and the mass M2 is descending :

By analogy to the first case :

. . ~ sinff—uqgosf)m,—(sina+ugcosa)m
The system acceleration is : @ — (B pa0spyma ~( Hacosa)my

m1+m2
We note that a # —a and this is due to the presence of friction forces.
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Chapter 5

Work and Enerqy

5.1 Work of a force:
The work of a force fapplied to a material point moving between two points Aand B is :

®p. 7 _ (B
Wap = i Frdl = [, (Fedx + Fydy + F,dz)

The work of a force F perpendicular to the displacement vector is zero.
The work of a force F constant in magnitude and direction is equal: Wyg = F - AB - cos (F, ﬁ)
The unit of work is : joule (J) = Newton-meter (N "m)

5.2 Power of a force:

The power of a forceF at each instant s :

P=F v
The power of a force is also defined as the instantaneous variation of its work:
aw
b=

The unit of power is : Watt = joule/s

5.3 Conservative force:
A force is said to be conservative if its work between two points does not depend on the path followed.

Any conservative force derives from a potential function E, (x, y, z)such that :

F— _grad _OByy OBy OB
F = —gradE,(x,yz) = LT ay ) +—k
_ _ 9B
Fx - dx
_ _ OB _
il Fy——g 4 WAB__AEp=Ep(A)_Ep(B)
_ 0B
lFZ - oz
0F _ 9Fy
ay T ax
=, . . . ——a o oF, _ 0F,
If a force F is conservative, its rotationaliszero: rot F=VAF =0 - PPl
oF, _ 0Fy
dy oz
5.4 Kinetic Energy:
The kinetic energy of a material point of mass m and speed V is :
1
EC = Emvz
Kinetic energy can also be defined in terms of momentum as :
_r
E. = 2m
5.5 Potential Energy:

Potential energy is the potential function associated with the conservative force.

56



Potential energy is defined up to a constant; it is always related to a referential taken as origin to
calculate it.
The work of a conservative force F is related to the potential energy by the expression :
Wyp = —AE, = E,(A) — Ep(B)
Here are some examples of potential energies :
Potential energy of a spring of stiffness K is :

_1,.02
Ep = EKX
Gravitational potential energy of a mass m in the field created by a mass M is :
mM
Ep = _Gr_z
Gravitational potential energy is :
E, =mgz

5.6 Work energy theorem:
The variation of the kinetic energy of a material point between two positions A and B is equal to the sum
of the works of the forces which are applied to it between these two positions.

AE. =% W,

5.7 Total Mechanical Energy:
The mechanical energy of a material point is the sum of the kinetic and potential energies :
Er =E .+ E,

5.8 Principle of Conservation of Total Mechanical Energy:
The total mechanical energy of a material point subjected to conservative forces is conserved.

EP)wy =En@ > E)w+ Ep)wy = E)py+ (Ep)s — AEr=0

5.9 Non-Conservative Forces:
If one of the forces is not conservative, the mechanical energy is not conserved. In this case :

AE; = Y W; (forces non conservatives)
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1. Consider the force F = 8xyl — (x2 + y?)Jj applied to a material point moving between two points
A(0,1) and B(1,2) :
o Calculate the work of this force along the pathy = x + 1
o Calculate the work of this force along the pathy = x2 + 1
o What can we conclude about strength F?
e Followingthepathy=x+1 - dy=dx and 0<x<1

(B) (B) (B)
Vlfq(;) = f F-dl = f (8xydx — (x? + y?)dy = f (8x(x + 1)dx — (x? + (x + 1)?)dy
(4) (4 (4)

1
Vlfq(g) =J. (6x% + 6x — 1)dx = 4
0

e Followingthepathy =x*+1 —> dy=2xdx and 0<x<1

(B) (B) (B)
I/I{g) = f F-dl = f (8xydx — (x* + y*)dy = f [8x(x? + 1)]dx — [x% + (x? + 1)?]2xdx
4 (4) (4)

@ _ [ 05y o3 19
W' = (=2x>+2x° + 6x)dx = 3
0

e Since the work of the force along the two paths is different, one can conclude that the force Fis
not conservative.

2. Let the force be F = y2T + 2xyj. Calculate its work according to the following paths :
o 0(0,0,0) > A(1,0,0) > B(1,1,0)

The right0(0,0,0) — B(1,1,0)

The connecting parabola 0(0,0,0) —» B(1,1,0) : y = x? in the plane XOY

The path closes:0(0,0,0) - A(1,0,0) - B(1,1,0) - (€(0,1,0) » 0(0,0,0)

Calculate rot F, what can be concluded about the force F ?

Calculate the work of F of 0(0,0.0) » B(1,1,0) in general.

Following the path 0(0,0) - A(1,0,0) —» B(1,1,0)

o O O O O

(4) (B)
Wi =i 4w = [ Feal+ [ Fodl
@) (4

Next 0(0,0.0) - A(1,0,0) : Wehavey =0 —- dy=0,dz=0and 0<x<1
1 4) 1
WO(A) = J o) y*dx +2xydy = [ 0dx — 0dy = 0.
The force is perpendicular to the displacement OA.
Next A(1,0,0) » B(1,1,0):Wehave x =1 — dx=0,dz=0 and 0<y<1
(B) 1
VI{4(;) = f y?dx + 2xydy = f y2(0) + 2ydy = 1
0
(4
1) _
Therefore, Wy, =1
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Following the line: 0(0,0,0) » B(1,1,0): y=x - dx=dy,dz=0 and 0<x<1
(B) 1
WO(;) = f x%dx + 2x?%dx = f 3x%dx =1
) 0
Following the parabola: 0(0,0,0) - B(1,1,0):y = x? > dy = 2xdx,dz=0and0<x <1
(B) 1
WO(;) = f y2dx + 2xydy = f S5x*dx =1
o) 0
Following the closed path : 0(0,0,0) - A(1,0,0) - B(1,1,0) - ((0,1,0) - 0(0,0,0)
(4) (B) © o)
WD =W+ w® + w® +w® = j Fdi+ f Fedl+ | Fral+ | Fral
0 (4) (B) ©
Following the line : 0(0,0,0) - A(1,0,0): W =w =1
Following the line : A(1,0.0) —» B(1,1,0): W =w) =1
Next B(1,1,0) - €(0,1,0): Wehave y=1 - dy=0, dz=0 and 0<x<1
© 0
WB(g) = f y?dx + 2xydy = f dx + 2x(0)dx = —1
1
B
Next €(0,1,0) - 0(0,0,0): Wehave x =0 - dx=0,dz=0and 0<y<1

WB(;*) = f((;))yzdx + 2xydy = flo dx + 2x(0)dx = —1

@ @ (%) 4 4 _
Woasco = Woa™ + Wap™ + Wy + Wep” =0

T k
7ot F=VAF=|2 2 2|l=(yv-20k=
rot F = VAF = % 3y @2 2y =2y)k=0
y2 2xy 0

We can conclude that the force F is conservative. Note that its work is independent of the path.
We also notice that the work following a closed path is zero.

Let's look for the potential function associated with the force F:

(y2=_2>
Y ax E,(x,y,2) = —xy* + C(y,2)
a
2xy:—ai;’ -  E,(x,y,2) =—xy*+C(,2)
0__% Ep(x'y'z)=Ep(x'y)
0z
OE. dcC dc
Ep(x,y,z)=—xy2+C(y) - a—;=—2xy+d—y - @=0 - C(y) = constante K

The potential function associated with the force Fis equal :
E,(x,y,z) = —xy? + K

In general, the work of F from 0(0,0,0) to B(1,1,0) is equal to :
Wog = —AE, = E,(0) — E,(B) = E,(0,0,0) — E,(1,1,0) = 1
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3. A body of mass M is released without initial velocity from the top of a mountain of height H as shown
in the figure below :
A

TN

Find the velocities of the body M at points B, Cand D.
Find the surface reaction forces on the body M at points C and D.

D
B B

= |nthe absence of friction, we have conservation of total mechanical energy :
Er)a = EDw = (Ecdw + (Ep)a = (Ec)) + (Ep)s)
Taking the level (B) as the initial reference of the potential energy — (Ep)) =0
Because vy, =0 - (Eg)a =0

- MgH =%Mv§ - v =.29gH
" (Ep)w = EDo - (Ec)w + (Ep)a) = (Ec)o) + (Ep)(c)
MgH=%MvCZ+MgR > wv,=.2g(H—R)
* (EDw=EDDoy > (Ec)w T Ep)a = (Ec)wn) + (Ep) )

1
MgH = EMUS +2MgR - vp=.2g(H—2R)
= By applying the fundamental principle of dynamics for the body at point C :

P+ N, = Ma,

Tl

By projecting on the two axes (I1) and ( L) :
(1):Ma, =-Mg
(L):Ma, =N,

v2 (H—-R)

Ne=M—=2
¢ R R

Mg
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= By applying the fundamental principle of dynamics for the body at point D :

l_))+ﬁD =M§D
{:II}—‘

(L)

By projecting on the two axes (11)and ( L) :

() : Ma, =0
(L):Ma, =Mg+Np - Np=Ma, —Mg
2
vh (2H — 5R)
Np=M—-Mg=——77M
p="gR "I R

4. How fast does a rocket need to escape the earth's gravitational field?
Acceleration of Gravity at Earth's Surface g, = 9.81m/s? and Earth's Radius R = 6.36x10°m
= By applying the principle of conservation of total mechanical energy :

ED)ay=EDwE —  EJa + Ep)ay = (Ec)wr) + (Ep)r)

1 ) mM 1 ) mM
Emv, —G?:EmUF—Gr—Z
The rocket escapes gravity = r =o et vp =0
1 mM 5 M
- Emv,—G?ZO - v,=26ﬁ

The force of weight defined by the universal law of gravitation : mg, = G 72—1;1 - go=0G =z

- vf =2g,R
N.A:v, = 1.12x10*m/s

5. A mass M falls from a height H onto a free spring of stiffness K.
o Find the maximum compression distance of the spring.

|
- —\—I—/— Sy ( Energie potentielle de pesanteur=0)
Y

= |nthe absence of friction, we have conservation of total mechanical energy :
EPpy =EnD@ > EDwy+ Ep)ay = (Ec)r) + (Ep)r)
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v=vp=0 - (Ec)(l) = (EC)(F) =0 - (EP)(I) = (EP)(F)
The zero level of the gravitational potential energy is indicated in the figure.
- Mghz—ng+%Ky2 - %Kyz—ng—Mghzo

It is a second degree equation. Only the positive root is acceptable.

Mg +M?2g? + 2MgKh Mg Kh
= =— 1+ [1+2—
y X r A+ |1+ Mg)

6. A bullet of mass m is fired from a pistol with velocity v. It hits a block of wood of mass M attached to
the end of a wire of length L. The two bodies (Block + ball) move apart at an angle 6.
o Find the speed of the ball v as a function of the angle 6.

ﬂ; M {Potential Energy Reference = 0)
17

e The conservation of momentum before and after the collision between the ball and the block :

. . - _ . m
Perfectly inelastic collision: » mv=m+M)V - V= eV

In the absence of friction, we have conservation of total mechanical energy :
EDp = EnDwE > EJw+ Ep)ay = (Ec)r) + (Ep)r)
1( +MV2+0=0+ (m+ M)gh h 1V2 ! m 2
- = d = — = —|—
2" mr g 29" ~2g\mrm”
m+ M
V= g,/Zgh

6
h = L(1 — cos@) = 2Lsin? (E)

- v = 2sin (g)(m+M)\/ﬁ

7. A bullet of mass m is fired from a pistol with velocity v. It hits a block of wood of mass M attached to a

free spring of stiffness K. The dynamic coefficient of friction between the wooden block (M) and the
contact surface is yg .

o Find the ball speed as a vfunction of the maximum compression of the spring.

= _NW
= M
LJ
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The conservation of momentum before and after the collision between the ball and the block :

. . P _ — m
Perfectly inelastic collision: — mv=(m+M)V - V= i)V

In the presence of friction, there is no conservation of total mechanical energy, we use the work
energy theorem :

AE. = (Ec)m — (Ec)ay = ziWi = W(ﬁ) + W(ﬁ) + W(f) + W(ressort)

2

Edw = a(m+ M2 =1 "
(C)(I)_E(m ) —Emv

The sum of the works of the forces Y,; W; = W(f) + W(ressort) = —f (Lo — L) — %K(L — Lg)?

2 and (EC)(F) = 0

W(ﬁ) = W(ﬁ) = 0; these forces are perpendicular to the displacement.
Maximum spring compression(Ly — L) = X
Force of friction f = uz(m + M)g

1, 1 m*
- —KX*+us(m+M)gX — =0

2 2m+m’ "
The speed of the ball is :
_ (m+ M) 1 aX + KX?

8. A mass M attached to the end of a wire of length L is angled aside 8;at point A and released

without initial velocity. At point B, it strikes and sticks to a small mass m. Both bodies (M + m)
deviate with an angle 9,.

O

Find the relationship between the two angles 8;and 9,.

2 B,

The fall of the mass M from (A) to ( By) :
In the absence of friction, we have conservation of total mechanical energy:

Er)wy = Ep@y > E)w + Ep)wy = (Ec)sy) + (Ep)s)
1

0+ Mgh, = EMszl +0 o Vg =./2gh

The collision between M and m :

The conservation of momentum before and after the collision between the ball and the block :
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m m

Perfectly inelastic collision: — Vg =(m+M)Vg, — Vg, = ngl = i 2gh4

Movement of the two masses M and m from ( B,) to (C) :
Er)ey = Er)e = (Eds,y + (Er)sy = (Ec)e + (Ep)e
Vg, M
= 2= (— =
g m+M
. 2 91 . 2 92
hy = L(1 — cosB,) = 2Lsin (7> and h, = L(1 — cos6,) = 2Lsin (7>

1
E(m+M)VBZZ +0=0+(m+M)gh, - h,

The relationship between the two angles 8;and 8, is :

sin(3) = Gsin (3)

9. A body of mass M is released without initial velocity from the top of a quadrant of radius R as shown

in the figure below. The body is subjected to a frictional force of constant magnitude f throughout its
journey. It reaches point B with speed v and stops at point C.

A
., -—-—— rR----———-——- 7
|
I
I
| |
II. I
: |
\
S I
LY
P |
P |
P
Y
- e .\",. R
- Fal |
- .
AT e l
.-f'/ -~ - I
" - w7 ‘M"x I
- _;,f'/ j_d_r"_. ‘*n\h |
~ -~ T T
s - -~ -~ o - :
o L - -
|~ L oty Pt e T |
-~ -~ -~ - - - - . [ |
(Potential Energy Reference = 0) B C

Find the magnitude of the frictional force f.

Find the distance BC.

In the presence of friction, there is no conservation of total mechanical energy, we use the work
energy theorem on the quarter circle :

AE, = (E) ) — (E)ay = ZiWi = w(P) + W(N) + W
The reaction force N is perpendicular to the displacement : W(ﬁ) =0
- %Mv2—0=MgR—fn2—R
f =~ [MgR — > Mv?]
R 2
On the course (BC) : AE, = (E¢)cy — (Ec) sy = LiW; = W(P) + W(N) + W(f)
The forces P and N are perpendicular to the displacement : W(l_5) = W(ﬁ) =0
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0 1M 2 D D —MUZ
- —_ = = — e d =
My =—f 2f

The stopping distance BCisequalto: D =

nRv?

4gR—2v2

10. A water pump has a power P = 12 hp. It is used to pump water from a well of depth H with a flow
3
rate of % = 27
At mn
o What is the maximum depth of the point if the efficiency of the pump is € = 80%.
e The pump does work per unit time equal to the potential energy of the water's gravity per unit
time. The power required to pump water from a depth H is therefore equal to :

AW  (Am)gH Am AV
P=_=( )g _Am P

g =" gH
At At a9 T A 9
_ eP
- H=—73y
PQA—t
N.A:P =12 hp = 12x746 = 8952 Watts
H=22m

11. A body of mass M is attached to a spring of stiffness K as shown in the figure below.
The spring is free and not stretched at point A. If the velocity of the body at point Cis v,.
o Find the velocity of the body at point B and A.

e Inthe absence of friction, we have conservation of total mechanical energy :
EPan =EDe = EDwy+ Ep)ay = (Ec) ) + (Ep)(o)

1 1 1
(Er)ey = (Ec)e) + (Ep)(c) = EMvcz — 2MgR + EK(ZR)2 = EMvg — 2MgR + 2KR?
1 1
Er)an = Ec)wn + (Ep) ) = EMUZ — Mgh + EK(L — Lo)?

1 1 1
EMvz — Mgh + E1((L —Ly)? = EMvg — 2MgR + 2KR?
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- v= \/vcz +%[4R2 —(L—=1Ly)?*—29(2R - h)

0
h = R(1 — cos@) = 2Rsin? (E)

L=+/(Ly+R)?+ R2 — 2R(Ly + R)cos@
Vs

= atpointB:f =, h=R and L =,/(Lo + R)*+ R2

K
vg = \/vcz + ZM[RZ — L3 —RLy + LO\/L% + 2RLy + ZRZ] — 29R

= atpointA:0=0, h=0 and L=1L,

, 4K
vy = |V +WR2 — 4gR

12. A projectile is launched with a magnitude velocity v, directed at an angle 6 to the horizontal.
o Calculate the maximum height H,,,, reached by the projectile.
o Calculate the speed of the projectile when it has reached half of its greatest height.

¥ vgcosd

A

B H?J"IRI

|

|
2 ! 2
! 1
| | :

e Inthe absence of friction, we have conservation of total mechanical energy :
ED)oy=ErDwy —  (Ec)wy + Ep)oy = (Ec)wmy + (Ep)
The maximum height H,,,, is reached by the projectile at point A when : v4 = vycos0
1 1
EMvg +0= EMvgcosz(Q) + MgH s
- v2(1 - cos?(0)) _ vésin?(0)
max Zg Zg
e (Ep)ioy=ED@ —=  (Ec)o) + (Ep)oy = (Ec)m) + (Ep) )
SMv} = MvE+ Mg o vp = [vF = gHpgx

5 g = v, ,1 _ sin;(e)

v = v, There are two positions B and C with the same velocity at height: H =

=

Hmax
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