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General Introduction 

Most people know, at least in some vague way, that the sophisticated technology that drives 

our society has been driven in turn by fundamental discoveries of physics. But, just what is 

physics? It derives its present name from the Greek word for nature; it was previously called 

natural philosophy. 

Physics can be defined as the science that deals with matter, energy, motion and force. It studies 

the fundamental building blocks of the universe and how they interact. It seeks answers to such 

fundamental questions as: What kind of world do we live in? How does it work? What are the 

fundamental laws of nature? Thus, physics is the basic science from which all others have 

derived. 

Transistors, microchips, lasers, computers, telecommunications, nuclear power and space travel 

are among the many applications of physics that are so pervasive in our times. In our daily 

newspaper or weekly magazine, we often find articles that attempt to explain to a lay public a 

variety of topics related to physics. These might be sophisticated experiments on fundamental 

particles of matter; space probes and their missions; discoveries of astronomy in very remote 

regions of space; exotic new theories on the nature of matter, or the universe as a whole. 

The relevance of physics is all around us. Although not as palpable as in the days of the Cold 

War with the Soviet Union, the terrifying threat of nuclear holocaust still hangs over all 

mankind. With so many programs competing for federal funds, government support of very 

expensive scientific ventures has become an issue of public interest. Except for fundamentalist 

groups, few, if any, religious leaders dare challenge the experimental findings of physics. No 

metaphysical speculation about the nature of reality1, whether by lay people or professional 

philosophers, can ignore these findings. We clearly live in times that require at least some 

modest level of literacy in physics, one of the most profound achievements of the human mind. 

Unfortunately, physics is the least known and the most intimidating of all sciences. This is true 

even for many who are literate at some level about other human endeavors. 

Among the factors that make physics appear so alien to so many people are the difficulty of 

many of its concepts, its pervasive use of advanced mathematics and cryptic symbolism, and 

the sophistication of its instruments, whose complexity goes far beyond the telescope first used 

by Galileo in 1609. 
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Although strongly intimidated by physics, much of the lay public has been, and still is, intrigued 

by the fundamental nature of its inquiry. This is shown by the success of dozens of books that 

have been written since Stephen Hawking’ s "A Brief History of Time" (1988) became a best 

seller. In most of the popular books on the market, however, the bulk of the material is at a level 

of presentation and detail that goes beyond the background and interest of much of the general 

public. (A notable exception is Roger S. Jones’ very readable "Physics for the Rest of Us", 

Contemporary Books, 1992). Many of these books focus on specific areas of scientific 

endeavor; some are offered as part of a series that covers a broader area of physics. 

In these chapters, we will begin to explore physics and leading up through a review of 

Sir Isaac Newton and the laws of physics that bear his name. We will also be introduced to the 

standards scientists use when they study physical quantities and the interrelated system of 

measurements most of the scientific community uses to communicate in a single mathematical 

language. Study the limits of our ability to be accurate and precise, and the reasons scientists 

go to painstaking lengths to be as clear as possible regarding their own limitations. Finally, we 

will study extensions of the application of Newton’s laws in everyday life. 
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Introduction 

This manuscript is meant for L1 (freshmen) students, it settles the basics of Physics and aims 

at enriching learners’ vocabulary through glossary and consolidates their knowledge through 

different tasks and activities. 

The final objective of this manuscript is to enable learners to see and notice that Physics is 

everywhere. Its applications range from driving a car to launching a rocket, from a skater 

whirling on ice to a neutron star spinning in space, and from taking your temperature to taking 

a chest X-ray. 

This work may also be regarded as a source book for teachers when preparing lectures or when 

dealing with some topics as these latters are introduced conceptually with a steady progression 

to precise definitions, illustrations through figures and examples and finally with activities that 

settle learners’ understanding. 

Organized in six chapters with glossaries and activities, this document helps freshmen students 

to settle their previous knowledge and contributes to enrich their technical vocabulary.  
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1. Measurements 

 

1.1 Introduction :  

Measurement is the quantification of attributes of an object or event, which can be used 

to compare with other objects or events. The scope and application of measurement are 

dependent on the context and discipline. 

The measurement of a property may be categorized by the following criteria: type, 

magnitude, unit, and uncertainty. They enable unambiguous comparisons between 

measurements. 

 The level of measurement is a taxonomy for the methodological character of a 

comparison. For example, two states of a property may be compared by ratio, difference, 

or ordinal preference. The type is commonly not explicitly expressed, but implicit in the 

definition of a measurement procedure. 

 The magnitude is the numerical value of the characterization, usually obtained with a 

suitably chosen measuring instrument. 

 A unit assigns a mathematical weighting factor to the magnitude that is derived as a 

ratio to the property of an artifact used as standard or a natural physical quantity. 

 An uncertainty represents the random and systemic errors of the measurement 

procedure; it indicates a confidence level in the measurement. Errors are evaluated by 

methodically repeating measurements and considering the accuracy and precision of the 

measuring instrument. 

Measurements most commonly use the International System of Units (SI) as a 

comparison framework. The system defines seven fundamental units: kilogram, meter, 

candela, second, ampere, kelvin, and mole. The first proposal to tie an SI base unit to 

an experimental standard was by Charles Sanders Peirce (1839–1914), who proposed to 

define the meter in terms of the wavelength of a spectral line. 

 

1.2 Units and Systems: 

Before SI units were widely adopted around the world, the British systems of English 

units and later imperial units were used in Britain, the Commonwealth and the United States. 

The system came to be known as U.S. customary units in the United States and is still in 

use there and in a few Caribbean countries. These various systems of measurement have at 
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times been called foot-pound-second systems after the Imperial units for length, weight and 

time. 

The metric system on the other hand is a decimal system of measurement based on its units 

for length, the meter and for mass, the kilogram. We are more interested in this textbook 

with SI units and derived units. 

1.2.1 International System of Units (SI): 

The International System of Units (abbreviated as SI from the French language name 

Système International d'Unités) is the modern revision of the metric system. It is the world's 

most widely used system of units. The SI was developed in 1960 from the meter–kilogram–

second (MKS) system, rather than the centimeter–gram–second (CGS) system, which, in 

turn, had many variants.  SI units are expressed in tab.1.1 as such: 

Base quantity Base unit Symbol Defining constant 

Time second  s hyperfine splitting in caesium-133 

Length  meter m Speed of light, c 

Mass kilogram  kg Planck constant, h 

Electric Current ampere  A Elementary charge, e 

Temperature  kelvin K Boltzmann constant, k 

Amount of 

substance  

mole mol Avogadro constant NA 

Luminous Intensity candela  cd Luminous efficacy of a 540 THz 

source Kcd 

Table 1: SI units 

 

1.2.2 Derived units: 

Derived units can be expressed in terms of products or quotients of base units. Derived units 

are displayed in tab.1.2. 

 

https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Second
https://en.wikipedia.org/wiki/Caesium-133
https://en.wikipedia.org/wiki/Length
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Kilogram
https://en.wikipedia.org/wiki/Planck_constant
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Ampere
https://en.wikipedia.org/wiki/Elementary_charge
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Boltzmann_constant
https://en.wikipedia.org/wiki/Amount_of_substance
https://en.wikipedia.org/wiki/Amount_of_substance
https://en.wikipedia.org/wiki/Mole_(unit)
https://en.wikipedia.org/wiki/Avogadro_constant
https://en.wikipedia.org/wiki/Luminous_intensity
https://en.wikipedia.org/wiki/Candela
https://en.wikipedia.org/wiki/Luminous_efficacy
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Derived Quantities   Equation   Derived Units  

 Area (A)   A = L2   m2  

 Volume (V)   V = L3   m3  

 Density (ρ)    ρ = m / V   kgm3 = kg m-3  

 Velocity (v)   v = L / t   ms = m s-1  

 Acceleration (a)   a = Δv / t   m s-1s = m s-2  

 Momentum (p)   p = m x v   (kg)(m s-1) = kg m s-1  

Derived 

Quantities 
Equation 

Derived Unit 

Derived Units 

Special Name Symbol 

Force (F)   F = pt  Newton   N  kg m s-1s = kg m s-2  

 

Pressure (p)  

 p = FA   Pascal   Pa  kg m s-2m2 = kg m-1 s-2  

Energy (E)  E = F x d   Joule   J  (kg m s-2)(m) = kg m2 s-2  

Power (P)   P = Et  Watt   W  kg m2 s-2s = kg m2 s-3  

Frequency (f)   f = 1t  Hertz   Hz   1s = s-1  

Charge (Q)  Q = I x t  Coulomb   C  A s  

Potential 

Difference (V)  

V = EQ  Volt   V  kg m2 s-2A s = kg m2 s-3 A-

1  

Resistance (R)  R = VI  Ohm   Ω kg m2 s-3 A-1 A = kg m2 s-

3 A-2  

Table 2: Derived units 
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1.3 Expressing larger and smaller physical quantities 

Once the fundamental units are defined, it is easier to express larger and smaller units of the 

same physical quantity. In the metric (SI) system these are related to the fundamental unit in 

multiples of 10 or 1/10. Thus 1 km is 1000 m and 1 mm is 1/1000 meter. Table 1.3 lists the 

standard SI prefixes, their meanings and abbreviations. 

Power of ten Prefix Abbreviation 

10−15  femto  f 

10−12  pico  p 

10−9  nano  n 

10−6  Micro μ 

10−3  milli  m 

10−2  centi  c 

10−1  deci  d 

101  deca  da 

102  hecto  h 

103  kilo  k 

106  mega  M 

109  giga  G 

1012  tera  T 

1015  peta  P 

Table 3: standard SI prefixes 
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To consolidate your information and understanding, try to answer to these MCQs 

Answers to the following MCQs are in bold

1. Physical sciences were divided into 

a. 4 disciplines 

b. 3 disciplines 

c. 5 disciplines 

d. 6 disciplines 

 

2. When a standard is set for a quantity, 

then standard quantity is called a 

a. Amount 

b. Rate 

c. Prefix 

d. Unit 

 

3. A worldwide system of 

measurements in which the units of base 

quantities were introduced is called: 

a. Prefixes 

b. international system of units 

c. sexasigmal system 

d. none of above 

 

4. Unit which is not derived is 

a. Newton 

b. Kilogram 

c. Watt 

d. Pascal 

 

5. Amount of a substance in terms of 

numbers is measured in 

a. Gram 

b. kilogram 

c. Mole 

d. Newton 

 

6. Units used to measure derived 

quantities are known as 

a. square units 

b. derived units 

c. base units 

d. none of above 

 

7. Thermal energy from a hot body flows to 

a cold body in form of 

a. sound 

b. signals 

c. heat 

d. waves 

 

8. All physical quantities are 

a. not measurable 

b. measurable 

c. related to each other 

d. not related to each other 

 

9. Base quantity among following is 

a. electric charge 

b. amount of substance 

c. area 

d. volume 

 

10. Volume, area, speed, electric 

charge, force and work are examples of 

a. quartile quantities 

b. base quantities 

c. derived quantities 

d. prefixes 

 

11. Derived quantities can be expressed in 

form of 

a. base quantities 

b. physical quantities 

c. non measurable quantities 

d. both B and C 

Check your Understanding 
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Accuracy: the degree to which a measured value agrees with correct value for that 

measurement 

Approximation: an estimated value based on prior experience and reasoning 

Classical Physics: physics that was developed from the Renaissance to the end of the 19th 

century 

Conversion factor: a ratio expressing how many of one unit are equal to another unit 

Derived units: units that can be calculated using algebraic combinations of the fundamental 

units 

English units (imperial): system of measurement used in the United States; includes units of 

measurement such as feet, gallons, and pounds 

Fundamental units: units that can only be expressed relative to the procedure used to measure 

them 

Kilogram: the SI unit for mass, abbreviated (kg) 

Law: a description, using concise language or a mathematical formula, a generalized pattern in 

nature that is supported by scientific evidence and 

repeated experiments 

Meter: the SI unit for length, abbreviated (m) 

Method of adding percents: the percent uncertainty in a quantity calculated by multiplication 

or division is the sum of the percent uncertainties in the items used to make the calculation 

Metric system: a system in which values can be calculated in factors of 10 

Model: representation of something that is often too difficult (or impossible) to display directly 

Modern Physics: the study of relativity, quantum mechanics, or both 

Order of Magnitude: refers to the size of a quantity as it relates to a power of 10 

Percent uncertainty: the ratio of the uncertainty of a measurement to the measured value, 

expressed as a percentage 

Physical quantity: a characteristic or property of an object that can be measured or calculated 

from other measurements 

Physics: the science concerned with describing the interactions of energy, matter, space, and 

time; it is especially interested in what fundamental mechanisms underlie every phenomenon 

Precision: the degree to which repeated measurements agree with each other 

Quantum mechanics: the study of objects smaller than can be seen with a microscope 

Relativity: the study of objects moving at speeds greater than about 1% of the speed of light, 

or of objects being affected by a strong gravitational field 

Glossary 
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SI units: the international system of units that scientists in most countries have agreed to use; 

includes units such as meters, liters, and grams 

Scientific method: a method that typically begins with an observation and question that the 

scientist will research; next, the scientist typically performs some research about the topic and 

then devises a hypothesis; then, the scientist will test the hypothesis by performing an 

experiment; finally, the scientist analyzes the results of the experiment and draws a conclusion 

Second: the SI unit for time, abbreviated (s) 

Significant figures: express the precision of a measuring tool used to measure a value 

Theory: an explanation for patterns in nature that is supported by scientific evidence and 

verified multiple times by various groups of researchers 

Uncertainty: a quantitative measure of how much your measured values deviate from a 

standard or expected value 

Units: a standard used for expressing and comparing measurements 
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II. One-dimensional Kinematics 

Learning objectives : 
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2 One-dimensional Kinematics 

Objects are in motion everywhere we look. Everything from a tennis game to a space-probe 

flyby of the planet Neptune involves motion. When you are resting, your heart moves blood 

through your veins; even in inanimate objects, there is continuous motion in the vibrations of 

atoms and molecules. Questions about motion are interesting in and of themselves: How long 

will it take for a space probe to get to Mars? Where will a football land if it is thrown at a certain 

angle? But an understanding of motion is also key to understanding other concepts in physics. 

An understanding of acceleration, for example, is crucial to the study of force. 

Our formal study of physics begins with kinematics which is defined as the study of motion 

without considering its causes. The word “kinematics” comes from a Greek term meaning 

motion and is related to other English words such as “cinema” (movies) and “kinesiology” (the 

study of human motion). In one-dimensional kinematics, we will study only the motion of a 

football, for example, without worrying about what forces cause or change its motion. In this 

chapter, we examine the simplest type of motion—namely, motion along a straight line, or one-

dimensional motion.  

2.1 Displacement 

Displacement in Physics is described in terms of position and distance. If an object moves 

relative to a reference frame, then the object’s position changes. This change in position is 

known as displacement. The word “displacement” implies that an object has moved, or has been 

displaced. 

 

 

 

 

 

2.1.1 Position 

In order to describe the motion of an object, we must first be able to describe its 

position—where it is at any particular time. More precisely, we need to specify its position 

relative to a convenient reference frame. Earth is often used as a reference frame, and we often 

describe the position of an object as it relates to stationary objects in that reference frame. For 

example, a rocket launch would be described in terms of the position of the rocket with respect 

to the Earth as a whole. In other cases, we use reference frames that are not stationary but are 

Displacement : 

Displacement is the change in position of an object: 

Δx = xf − x0,  

where Δx is displacement, xf is the final position, and x0 is the initial position. 
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in motion relative to the Earth. To describe the position of a person in an airplane, for example, 

we use the airplane, not the Earth, as the reference frame. 

2.1.2 Distance 

Although displacement is described in terms of direction, distance is not. Distance is 

defined to be the magnitude or size of displacement between two positions. Note that the 

distance between two positions is not the same as the distance traveled between them. Distance 

traveled is the total length of the path traveled between two positions. Distance has no direction 

and, thus, no sign.  

2.2 Vectors and Scalars Coordinate Systems 

What is the difference between distance and displacement? Whereas displacement is defined 

by both direction and magnitude, distance is defined only by magnitude only. Displacement is 

an example of a vector quantity. Distance is an example of a scalar quantity. A vector is any 

quantity with both magnitude and direction.  

The direction of a vector in one-dimensional motion is given simply by a plus ( + ) or minus ( 

− ) sign. Vectors are represented graphically by arrows. An arrow used to represent a vector has 

a length proportional to the vector’s magnitude (e.g., the larger the magnitude, the longer the 

length of the vector) and points in the same direction as the vector. 

Some physical quantities, like distance, either have no direction or none is specified. A scalar 

is any quantity that has a magnitude, but no direction. 

For example, a 20ºC temperature, the 250 kilocalories (250 Calories) of energy in a candy bar, 

a 90 km/h speed limit, a person’s 1.8 m height, and a distance of 2.0 m are all scalars—quantities 

with no specified direction. Note, however, that a scalar can be negative, such as a −20ºC 

temperature. In this case, the minus sign indicates a point on a scale rather than a direction. 

Scalars are never represented by arrows. 

Figure 1: speed vs. velocity 
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2.3 Coordinate Systems of one-dimensional motion 

In order to describe the direction of a vector quantity, you must designate a coordinate system 

within the reference frame. For one-dimensional motion, this is a simple coordinate system 

consisting of a one-dimensional coordinate line. In general, when describing horizontal motion, 

motion to the right is usually considered positive, and motion to the left is considered negative. 

With vertical motion, motion up is usually positive and motion down is negative. In some cases, 

however, as with the jet in (Figure 2.2), it can be more convenient to switch the positive and 

negative directions. For example, if you are analyzing the motion of falling objects, it can be 

useful to define downwards as the positive direction. If people in a race are running to the left, 

it is useful to define left as the positive direction. It does not matter as long as the system is 

clear and consistent. Once you assign a positive direction and start solving a problem, you 

cannot change it. 

 

Figure 2: Direction of motion:It is usually convenient to consider motion upward or to the right as positive ( + ) and motion 
downward or to the left as negative ( − ) . 

 

2.4 Time, velocity and speed 

There is more to motion than distance and displacement. Questions such as, “How long does a 

foot race take?” and “What was the runner’s speed?” cannot be answered without an 

understanding of other concepts. In this section we add definitions of time, velocity, and speed 

to expand our description of motion. 

2.4.1 Time 

The most fundamental physical quantities are defined by how they are measured. This is the 

case with time. Every measurement of time involves measuring a change in some physical 

quantity. It may be a number on a digital clock, a heartbeat, or the position of the Sun in the 

sky. In physics, the definition of time is simple— time is change, or the interval over which 

change occurs. It is impossible to know that time has passed unless something changes. 
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The amount of time or change is calibrated by comparison with a standard. The SI unit for time 

is the second, abbreviated s. We might, for example, observe that a certain pendulum makes 

one full swing every 0.75 s. We could then use the pendulum to measure time by counting its 

swings or, of course, by connecting the pendulum to a clock mechanism that registers time on 

a dial. This allows us to not only measure the amount of time, but also to determine a sequence 

of events. 

How does time relate to motion? We are usually interested in elapsed time for a particular 

motion, such as how long it takes an airplane passenger to get from his seat to the back of the 

plane. To find elapsed time, we note the time at the beginning and end of the motion and subtract 

the two. Elapsed time Δt is the difference between the ending time and beginning time, 

Δt = tf − t0 

Where Δt is the change in time or elapsed time, tf is the time at the end of the motion, and t0 is 

the time at the beginning of the motion. (The delta symbol, Δ , means the change in the quantity 

that follows it.) 

2.4.2 Velocity 

The notion of velocity is probably the same as its scientific definition. We know that if 

we have a large displacement in a small amount of time we have a large velocity, and that 

velocity has units of distance divided by time, such as miles per hour or kilometers per hour. 

 

 

 

 

 

 

 

2.4.3 Speed 

In everyday language, most people use the terms “speed” and “velocity” interchangeably. In 

physics, however, they do not have the same meaning and they are distinct concepts. One major 

difference is that speed has no direction. Thus, speed is a scalar. Just as we need to distinguish 

between instantaneous velocity and average velocity, we also need to distinguish between 

instantaneous speed and average speed. 

Average velocity: 

Average velocity is displacement (change in position) divided by the time of travel, 

v - = Δx / Δt = xf − x0 / tf − t0 

Where v - is the average (indicated by the bar over the v ) velocity, Δx is the change in 

position (or displacement), and xf and x0 are the final and beginning positions at times tf 

and t0 , respectively. If the starting time t0 is taken to be zero, then the average velocity is 

simply: 

v - = Δx / t 
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Instantaneous speed is the magnitude of instantaneous velocity, whereas average speed is the 

distance traveled divided by elapsed time. 

We have noted that distance traveled can be greater than displacement. So average speed can 

be greater than average velocity. 

2.5 Acceleration 

In everyday conversation, to accelerate means to speed up. The accelerator in a car can in fact 

cause it to speed up. The greater the acceleration, the greater the change in velocity over a given 

time. The formal definition of acceleration is consistent with these notions, but more inclusive. 

 

 

 

 

 

  

Remark: 

 Acceleration as a Vector: Acceleration is a vector in the same direction as the change in 

velocity, Δv. Since velocity is a vector, it can change either in magnitude or in direction. 

Acceleration is therefore a change in either speed or direction, or both. 

 Although acceleration is in the direction of the change in velocity, it is not always in the 

direction of motion. When an object slows down, its acceleration is opposite to the 

direction of its motion. This is known as deceleration. 

2.6 Falling Objects 

Falling objects form an interesting class of motion problems. For example, we can estimate the 

depth of a vertical mine shaft by dropping a rock into it and listening for the rock to hit the 

bottom. By applying the kinematics developed so far to falling objects, we can examine some 

interesting situations and learn much about gravity in the process. 

2.6.1 Gravity 

The most remarkable and unexpected fact about falling objects is that, if air resistance and 

friction are negligible, then in a given location all objects fall toward the center of Earth with 

the same constant acceleration, independent of their mass. This experimentally determined fact 

is unexpected, because we are so accustomed to the effects of air resistance and friction that we 

expect light objects to fall slower than heavy ones. 

Average acceleration: 

Average Acceleration is the rate at which velocity changes 

ā = Δv / Δt = vf − v0 / tf − t0 

Where a - is average acceleration, v is velocity, and t is time. (The bar over the a means 

average acceleration.) 
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Figure 3: a hammer and a feather falling in air (friction and resistance) and in a vaccum 

In the real world, air resistance can cause a lighter object to fall slower than a heavier object of 

the same size. Air resistance and friction oppose the motion of an object through the air.  

The force of gravity causes objects to fall toward the center of Earth. The acceleration of free-

falling objects is therefore called the acceleration due to gravity. The acceleration due to 

gravity is constant, which means we can apply the kinematics equations to any falling object 

where air resistance and friction are negligible. This opens a broad class of interesting 

situations. The acceleration due to gravity is so important that its magnitude is given its own 

symbol, g . It is constant at any given location on Earth and has the average value 

g = 9.80 m/s2. 

 

 

To consolidate your information and understanding, try to answer to these MCQs 

Answers to the following MCQs are in bold.

1. Total distance covered in total time taken 

is termed as 

a. instantaneous speed 

b. average speed 

c. uniform speed 

d. variable speed 

 

2. Velocity is the 

a. distance covered per unit time 

b. displacement covered per unit 

time 

c. time taken per unit distance 

d. time taken per unit displacement 

 

3. Distance in specified direction is termed 

as 

a. Directional Distance 

b. Uni-directional Distance 

c. Displacement 

d. Directional Displacement 

 

4. When speed of object changes, velocity 

a. remains same 

b. also changes 

c. decreases 

d. increases 

 

5. One of characteristics of air resistance is 

a. It does not oppose the motion 

b. It decreases with the speed of the 

object 

c. It decreases with the surface area 

Check Your Understanding 
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d. It increases with the density of the 

air 

 

6. Deceleration is also known as 

A. retardation 

B. acceleration 

C. opposite velocity 

D. inertia 

 

7. Air resistance is a 

a. frictional force 

b. gravitational force 

c. backward force 

d. balanced force 

 

8. If a feather and an iron bar is released 

from a same height in a room without any 

air resistance. first one to fall is 

a. Iron bar 

b. Feather 

c. Both at the same time 

d. They won’t fall 

 

9. Following that is not characteristic of air 

resistance is 

a. It always opposes the motion 

b. It decreases with the speed of the 

object 

c. It increases with the surface area 

d. It increases with the density of the 

air 

 

10. Unchanged or constant speed is termed 

as 

a. instantaneous speed 

b. average speed 

c. uniform speed 

d. variable speed 

 

12. Change of distance in a specified 

direction per unit time is termed as 

a. Acceleration 

b. Velocity 

c. Speed 

d. Directional Speed 

 

12. When speed remains constant, velocity 

a. may change 
b. remain constant 

c. must changes 

d. slightly increases  

 

13. Changing or inconsistent speed is 

termed as 

a. instantaneous speed 

b. average speed 

c. uniform speed 

d. variable speed 

 

14. Theory that 'all object falling under 

gravity accelerate at same constant rate' was 

discovered by 

a. Albert Einstein 

b. Robert Hooke 

c. sir Isaac Newton 

d. Galileo Galilei 

 

15. Negative acceleration is termed as 

a. ceasing 

b. retardation 

c. inertia 

d. opposite velocity 

 

16. Acceleration due to free-fall or gravity 

doesn't depend on 

a. size 

b. Material 

c. Shape and size 

d. Shape, size and material 

 

17. Speed that you check for a moment on 

speed-o-meter is termed as 

a. instantaneous speed 

b. average speed 

c. uniform speed 

d. variable speed
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Acceleration due to gravity: acceleration of an object as a result of gravity 

Acceleration: the rate of change in velocity; the change in velocity over time 

Average acceleration: the change in velocity divided by the time over which it changes 

Average speed: distance traveled divided by time during which motion occurs 

Average velocity: displacement divided by time over which displacement occurs 

Deceleration: acceleration in the direction opposite to velocity; acceleration that results in a 

decrease in velocity 

Dependent variable: the variable that is being measured; usually plotted along the y -axis 

Displacement: the change in position of an object 

Distance traveled: the total length of the path traveled between two positions 

Distance: the magnitude of displacement between two positions 

Elapsed time: the difference between the ending time and beginning time 

Free-fall: the state of movement that results from gravitational force only 

Independent variable: the variable that the dependent variable is measured with respect to; 

usually plotted along the x -axis 

Instantaneous acceleration: acceleration at a specific point in time 

Instantaneous speed: magnitude of the instantaneous velocity 

Instantaneous velocity: velocity at a specific instant, or the average velocity over an 

infinitesimal time interval 

Kinematics: the study of motion without considering its causes 

Model: simplified description that contains only those elements necessary to describe the 

physics of a physical situation 

Position: the location of an object at a particular time 

Scalar: a quantity that is described by magnitude, but not direction 

Slope: the difference in y -value (the rise) divided by the difference in x -value (the run) of two 

points on a straight line 

Time: change, or the interval over which change occurs 

Vector: a quantity that is described by both magnitude and direction 

Y-intercept: the y- value when x = 0, or when the graph crosses the y –axis 

 

Glossary 
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3 Two dimension Kinematics 

3.1 Vector Addition and Subtraction: Graphical Methods 

3.2 Vector Addition and Subtraction: Analytical Methods 

3.3 Projectile Motion 

Check Your Understanding 

 

 

 

 

 

 

 

 

 

 

 

III. Two-dimensional Kinematics 
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3 Two dimension Kinematics 

The arc of a basketball, the orbit of a satellite, a bicycle rounding a curve, a swimmer diving 

into a pool, blood gushing out of a wound, and a puppy chasing its tail are but a few examples 

of motions along curved paths. In fact, most motions in nature follow curved paths rather than 

straight lines. 

Motion along a curved path on a flat surface or a plane (such as that of a ball on a pool table or 

a skater on an ice rink) is two-dimensional, and thus described by two-dimensional kinematics. 

Motion not confined to a plane, such as a car following a winding mountain road, is described 

by three-dimensional kinematics. Both two- and three-dimensional kinematics are simple 

extensions of the one-dimensional kinematics developed for straight-line motion in the previous 

chapter. This simple extension will allow us to apply physics to many more situations, and it 

will also yield unexpected insights about nature. 

 The shortest path between any two points is a straight line. In two dimensions, this path 

can be represented by a vector with horizontal and vertical components as in figure 3.1. 

 The horizontal and vertical components of a vector are independent of one another. 

Motion in the horizontal direction does not affect motion in the vertical direction, and 

vice versa. Figure 3.4. 

 

Figure 4: The straight-line path followed by a helicopter between the two points is shorter than the 14 blocks walked by the 
pedestrian. 
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Figure 5: independence of motion 

 

3.1 Vector Addition and Subtraction: Graphical Methods  

 The graphical method of adding vectors A and B involves drawing vectors on a graph 

and adding them using the head-to-tail method. The resultant vector R is defined such 

that A + B = R. The magnitude and direction of R are then determined with a ruler and 

protractor, respectively. 

 The graphical method of subtracting vector B from A involves adding the opposite of 

vector B, which is defined as −B. In this case, A – B = A + (–B) = R. Then, the head-

to-tail method of addition is followed in the usual way to obtain the resultant vector R. 

 Addition of vectors is commutative such that A + B = B + A. 

 The head-to-tail method of adding vectors involves drawing the first vector on a graph 

and then placing the tail of each subsequent vector at the head of the previous vector. 

The resultant vector is then drawn from the tail of the first vector to the head of the final 

vector. 

 If a vector A is multiplied by a scalar quantity c, the magnitude of the product is given 

by cA. If c is positive, the direction of the product points in the same direction as A; if 

c is negative, the direction of the product points in the opposite direction as A. 

3.2 Vector Addition and Subtraction: Analytical Methods 

Magnitude and direction of a resultant vector. 

• The steps to add vectors A and B using the analytical method are as follows: 

Step 1: Determine the coordinate system for the vectors. Then, determine the horizontal 

and vertical components of each vector using the equations 
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Ax = A cos θ 
and 

Ay = A sin θ 

Bx = B cos θ By = B sin θ 

 

Step 2: Add the horizontal and vertical components of each vector to determine the 

components Rx and Ry of the resultant vector, R: 

Rx = Ax + Bx 

and 

Ry = Ay + By. 

Step 3: Use the Pythagorean theorem to determine the magnitude, R, of the resultant 

vector R: 

R = Rx 2 + Ry 2 . 

Step 4: Use a trigonometric identity to determine the direction, θ , of R : 

θ = tan−1(Ry / Rx). 

3.3 Projectile Motion 

Projectile motion is the motion of an object thrown or projected into the air, subject to 

only the acceleration of gravity. The object is called a projectile, and its path is called its 

trajectory. The motion of falling objects is a simple one-dimensional type of projectile motion 

in which there is no horizontal movement. In this section, we consider two-dimensional 

projectile motion, such as that of a football for which air resistance is negligible (figure 3.3) 

The most important fact to remember here is that motions along perpendicular axes are 

independent and thus can be analyzed separately. The key to analyzing two-dimensional 

projectile motion is to break it into two motions, one along the horizontal axis and the other 

along the vertical. (This choice of axes is the most sensible, because acceleration due to gravity 

is vertical—thus, there will be no acceleration along the horizontal axis when air resistance is 

negligible.) As is customary, we call the horizontal axis the x-axis and the vertical axis the y-

axis. The magnitudes of these vectors are s, x, and y.  

 

Figure 6: The total displacement s of a soccer ball at a point along its path. The vector s has components x and y along the 
horizontal and vertical axes. Its magnitude is s , and it makes an angle θ with the horizontal 
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 To solve projectile motion problems, perform the following steps: 

1. Determine a coordinate system. Then, resolve the position and/or velocity of the object in 

the horizontal and vertical components. The components of position s are given by the 

quantities x and y , and the components of the velocity v are given by vx = v cos θ and 

vy = v sin θ , where v is the magnitude of the velocity and θ is its direction. 

2. Analyze the motion of the projectile in the horizontal direction using the following equations: 

Horizontal motion (ax = 0) 

x = x0 + vxt 

vx = v0x = vx = velocity is a constant. 

3. Analyze the motion of the projectile in the vertical direction using the following equations: 

Vertical motion (Assuming positive direction is up; ay = −g = −9.80 m/s2) 

y = y0 +1/2(v0y + vy)t 

vy = v0y − gt 

y = y0 + v0yt −1/2gt2 

v2
y = v2

0y− 2g(y − y0). 

4. Recombine the horizontal and vertical components of location and/or velocity using the 

following equations: 

s = √x2 + y2 

θ = tan−1(y / x) 

v = √v2
x + v2

y 

θv = tan−1(vy / vx). 

• The maximum height h of a projectile launched with initial vertical velocity v0y is given by 

h =v2
0y / 2g  

• The maximum horizontal distance traveled by a projectile is called the range. The range R of 

a projectile on level ground launched at an angle 

θ0 above the horizontal with initial speed v0 is given by 

R = v2
0 sin 2θ0 / g  
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To consolidate your information and understanding, try to answer to these MCQs 

Answers to the following MCQs are in bold. 

1. Point of intersection of two 

coordinate axes is called 

A. mid 

B. origin 

C. circumference 

D. radius 

 

2. A vector having 'magnitude only' is 

called 

A. scalar 

B. resultant 

C. unit vector 

D. temperature 

 

3. If value of moment arm is zero, then 

torque produced will be 

A. 1 

B. 0 

C. doubled 

D. decreased 

 

4. Product of velocity and mass is 

called 

A. momentum 

B. work 

C. acceleration 

D. speed 

 

5. Vector product of two vectors is also 

known as 

A. scalar product 

B. dot product 

C. point product 

D. cross product 

 

6. Sum of all torques acting on a body 

is zero, this condition represents 

equilibrium's 

A. first condition 

B. second condition 

C. third condition 

D. fourth condition 

 

7. A body at rest or moving with 

uniform velocity will have acceleration 

A. 1 

B. 0 

C. min 

D. max 

 

8. A vector whose magnitude is zero is 

called a 

A. scalar 

B. resultant 

C. unit vector 

D. null vector 

9. If two vectors have same magnitude 

and are parallel to each other, then they 

are said to be 

A. same 

B. different 

C. negative 

D. equal 

 

10. If 2nd condition of equilibrium is 

satisfied, body will be in 

A. translational equilibrium 

B. rotational equilibrium 

C. static equilibrium 

D. dynamic equilibrium 

 

11. Physical quantities having 

magnitude only are called 

A. vector quantities 

B. scalar quantities 

C. mental quantities 

Check Your Understanding 
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D. both a and b 

 

12. According to system international, 

unit of torque is 

A. newton meter 

B. newton per meter 

C. newton per meter square 

D. per newton meter 

 

13. If first condition of equilibrium is 

satisfied, then body will be in 

A. translational equilibrium 
B. rotational equilibrium 

C. static equilibrium 

D. dynamic equilibrium 

 

14. To satisfy first condition of 

equilibrium, if rightward forces are 

positive, leftward forces must be 

A. positive 

B. negative 

C. doubled 

D. halved 

 

15. Vector whose magnitude is zero has 

a 

A. positive direction 

B. arbitrary direction 

C. negative direction 

D. both a and b 

 

16. Physical quantity that has 

magnitude and direction as well is 

known as 

A. mass 

B. time 

C. velocity 

D. temperature 

 

17. Scalar product of two vectors is also 

known as 

A. vector product 

B. dot product 

C. point product 

D. both a and b 

 

18. If a body is in rest or in uniform 

velocity, it is said to be in 

A. rest 

B. uniform motion 

C. equilibrium 

D. constant force 

 

19. Two vectors are considered to be 

equal if they have same magnitude and 

A. different direction 

B. positive direction 

C. same direction 

D. negative direction 

 

20. Distance from a point around which 

body rotates and point at end is called 

A. length of the object 

B. moment arm 

C. momentum arm 

D. distance of object 

 



Chapter IV: Dynamics: Newton’s Laws of Motion           

26 
 

 

 

 

4 Introduction to Dynamics: Newton’s Laws of Motion 

4.1 Development of Force Concept 

4.2 Newton’s First Law of Motion: Inertia 

4.3 Newton’s Second Law of Motion: Concept of a System 

4.4 Newton’s Third Law of Motion: Symmetry in Forces 

4.5 Further Applications of Newton’s Laws of Motion 

4.6 Extended Topic: The Four Basic Forces 

Check your Understanding 

Glossary 
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4 Introduction to Dynamics: Newton’s Laws of Motion 

The study of motion is kinematics, but kinematics only describes the way objects move—their 

velocity and their acceleration. Dynamics considers the forces that affect the motion of moving 

objects and systems. Newton’s laws of motion are the foundation of dynamics. These laws 

provide an example of the breadth and simplicity of principles under which nature functions. 

They are also universal laws in that they apply to similar situations on Earth as well as in space. 

4.1 Development of Force Concept 

Dynamics is the study of the forces that cause objects and systems to move. To understand this, 

we need a working definition of force. Our intuitive definition of force—that is, a push or a 

pull—is a good place to start. We know that a push or pull has both magnitude and direction 

(therefore, it is a vector quantity) and can vary considerably in each regard.  

In contrast, Earth exerts only a tiny downward pull on a flea. Our everyday experiences also 

give us a good idea of how multiple forces add. If two people push in different directions on a 

third person, we might expect the total force to be in the direction shown. Since force is a vector, 

it adds just like other vectors. Forces, like other vectors, are represented by arrows and can be 

added using the familiar head-to-tail method or by trigonometric methods. 

A quantitative definition of force can be based on some standard force, just as distance is 

measured in units relative to a standard distance. 

One possibility is to stretch a spring a certain fixed distance, as illustrated in Figure 4.1, and 

use the force it exerts to pull itself back to its relaxed shape—called a restoring force—as a 

standard. The magnitude of all other forces can be stated as multiples of this standard unit of 

force.  

 

Figure 7: Force exerted by a stretched spring 
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4.2 Newton’s First Law of Motion: Inertia 

Experience suggests that an object at rest will remain at rest if left alone, and that an object in 

motion tends to slow down and stop unless some effort is made to keep it moving. What 

Newton’s first law of motion states, however, is the following: 

 

 

 

 

Newton’s first law is completely general and can be applied to anything from an object sliding 

on a table to a satellite in orbit to blood pumped from the heart. Experiments have thoroughly 

verified that any change in velocity (speed or direction) must be caused by an external force. 

The idea of generally applicable or universal laws is important not only here—it is a basic 

feature of all laws of physics. Identifying these laws is like recognizing patterns in nature from 

which further patterns can be discovered.  

Summary: 

 Newton’s first law of motion states that a body at rest remains at rest, or, if in motion, 

remains in motion at a constant velocity unless acted on by a net external force. This is 

also known as the law of inertia. 

 Inertia is the tendency of an object to remain at rest or remain in motion. Inertia is 

related to an object’s mass. 

 Mass is the quantity of matter in a substance. 

4.3 Newton’s Second Law of Motion: Concept of a System 

Newton’s second law of motion is closely related to Newton’s first law of motion. It 

mathematically states the cause and effect relationship between force and changes in motion. 

Newton’s second law of motion is more quantitative and is used extensively to calculate what 

happens in situations involving a force. 

 Change in motion is equivalent to a change in velocity. A change in velocity means, by 

definition, that there is an acceleration. Newton’s first law says that a net external force 

causes a change in motion; thus, we see that a net external force causes acceleration. 

 An external force acts from outside the system of interest, figure 4.2 

 

 

Newton’s First Law of Motion: 

A body at rest remains at rest, or, if in motion, remains in motion at a constant velocity 

unless acted on by a net external force 



Chapter IV: Dynamics: Newton’s Laws of Motion           

29 
 

 

Figure 8: Different forces exerted on the same mass produce different accelerations 

 

 

 

 

 

 

 

 

 

 

 

 The weight w of an object is defined as the force of gravity acting on an object of mass 

m. The object experiences an acceleration due to gravity g : 

w = mg. 

 If the only force acting on an object is due to gravity, the object is in free fall. 

 Friction is a force that opposes the motion past each other of objects that are touching 

 When the net external force on an object is its weight, we say that it is in free-fall. 

Newton’s Second Law of Motion: 

The acceleration of a system is directly proportional to and in the same direction as the net 

external force acting on the system, and inversely proportional to its mass. 

In equation form, Newton’s second law of motion is 

 a = Fnet / m. 

This is often written in the more familiar form 

Fnet = ma.  

When only the magnitude of force and acceleration are considered, this equation is simply 

Fnet = ma. 
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4.4 Newton’s Third Law of Motion: Symmetry in Forces 

This law represents a certain symmetry in nature: Forces always occur in pairs, and one body 

cannot exert a force on another without experiencing a force itself. We sometimes refer to this 

law loosely as “action-reaction,” where the force exerted is the action and the force experienced 

as a consequence is the reaction. Newton’s third law has practical uses in analyzing the origin 

of forces and understanding which forces are external to a system. 

 

 

 

 

4.5 Further Applications of Newton’s Laws of Motion 

 Newton’s laws of motion can be applied in numerous situations to solve problems of 

motion. 

 Some problems will contain multiple force vectors acting in different directions on an 

object. For this, we need to draw diagrams, resolve all force vectors into horizontal and 

vertical components, and draw a free-body diagram. Always analyze the direction in 

which an object accelerates so that you can determine whether Fnet = ma or Fnet = 0  

 The normal force on an object is not always equal in magnitude to the weight of the 

object. If an object is accelerating, the normal force will be less than or greater than the 

weight of the object. In addition, if the object is on an inclined plane, the normal force 

will always be less than the full weight of the object. 

 Some problems will contain various physical quantities, such as forces, acceleration, 

velocity, or position. You can apply concepts from kinematics and dynamics in order to 

solve these problems of motion. 

4.6 Extended Topic: The Four Basic Forces 

 The various types of forces that are categorized for use in many applications are all 

manifestations of the four basic forces in nature. 

 The properties of these forces are summarized in Table 4.1. 

 

 

 

 

Newton’s Third Law of Motion: 

Whenever one body exerts a force on a second body, the first body experiences a force that 

is equal in magnitude and opposite in direction to the force that it exerts.  
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Force Approximate 

Relative 

Strengths 

Range Attraction/Repulsion Carrier 

Particle 

Gravitational 10−38 ∞ attractive only Graviton 

Electromagnetic 10 – 2 ∞ Attractive 

and repulsive 

Photon 

Weak Nuclear 10 – 13 < 10–18 m Attractive 

and repulsive 

W+ , W – , 

Z0 

Strong Nuclear 1 < 10–15 m Attractive 

and repulsive 

Gluon 

Table 4: Properties of the Four Basic Forces 

 Everything we experience directly without sensitive instruments is due to either 

electromagnetic forces or gravitational forces. The nuclear forces are responsible for the 

submicroscopic structure of matter, but they are not directly sensed because of their 

short ranges. Attempts are being made to show all four forces are different 

manifestations of a single unified force. 

 A force field surrounds an object creating a force and is the carrier of that force. 

To consolidate your information and understanding, try to answer to these MCQs 

Answers to the following MCQs are in bold.

1. Total distance covered in total time taken 

is termed as 

e. instantaneous speed 

f. average speed 

g. uniform speed 

h. variable speed 

 

2. Velocity is the 

e. distance covered per unit time 

f. displacement covered per unit 

time 

g. time taken per unit distance 

h. time taken per unit displacement 

 

3. Distance in specified direction is termed 

as 

e. Directional Distance 

f. Uni-directional Distance 

g. Displacement 

h. Directional Displacement 

 

4. When speed of object changes, velocity 

e. remains same 

f. also changes 

g. decreases 

h. increases 

 

5. One of characteristics of air resistance is 

e. It does not oppose the motion 

f. It decreases with the speed of the 

object 

g. It decreases with the surface area 
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h. It increases with the density of the 

air 

 

6. Deceleration is also known as 

E. retardation 

F. acceleration 

G. opposite velocity 

H. inertia 

 

7. Air resistance is a 

e. frictional force 

f. gravitational force 

g. backward force 

h. balanced force 

 

8. If a feather and an iron bar is released 

from a same height in a room without any 

air resistance. first one to fall is 

e. Iron bar 

f. Feather 

g. Both at the same time 

h. They won’t fall 

 

9. Following that is not characteristic of air 

resistance is 

e. It always opposes the motion 

f. It decreases with the speed of the 

object 

g. It increases with the surface area 

h. It increases with the density of the 

air 

10. Unchanged or constant speed is termed 

as 

e. instantaneous speed 

f. average speed 

g. uniform speed 

h. variable speed 

 

11. Change of distance in a specified 

direction per unit time is termed as 

e. Acceleration 

f. Velocity 

g. Speed 

h. Directional Speed 

 

12. When speed remains constant, velocity 

e. may change 
f. remain constant 

g. must changes 

h. slightly increases 

 

13. Changing or inconsistent speed is 

termed as 

e. instantaneous speed 

f. average speed 

g. uniform speed 

h. variable speed 

 

14. Theory that 'all object falling under 

gravity accelerate at same constant rate' was 

discovered by 

e. Albert Einstein 

f. Robert Hooke 

g. sir Isaac Newton 

h. Galileo Galilei 

 

15. Negative acceleration is termed as 

e. ceasing 

f. retardation 

g. inertia 

h. opposite velocity 

 

16. Acceleration due to free-fall or gravity 

doesn't depend on 

e. size 

f. Material 

g. Shape and size 

h. Shape, size and material 

 

17. Speed that you check for a moment on 

speed-o-meter is termed as 

e. instantaneous speed 

f. average speed 

g. uniform speed 

h. variable speed 
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Acceleration: The rate at which an object’s velocity changes over a period of time 

Carrier particle: A fundamental particle of nature that is surrounded by a characteristic force 

field; photons are carrier particles of the electromagnetic force. 

Dynamics: The study of how forces affect the motion of objects and systems 

External force: A force acting on an object or system that originates outside of the object or 

system 

Force field: A region in which a test particle will experience a force 

Force: A push or pull on an object with a specific magnitude and direction; can be represented 

by vectors; can be expressed as a multiple of a standard force 

Free-body diagram: A sketch showing all of the external forces acting on an object or system; 

the system is represented by a dot, and the forces are represented by vectors extending outward 

from the dot 

Free-fall: A situation in which the only force acting on an object is the force due to gravity 

Friction: A force past each other of objects that are touching; examples include rough surfaces 

and air resistance 

Inertia: The tendency of an object to remain at rest or remain in motion 

Inertial frame of reference: A coordinate system that is not accelerating; all forces acting in 

an inertial frame of reference are real forces, as opposed to fictitious forces that are observed 

due to an accelerating frame of reference 

Law of inertia: Newton’s first law of motion 

Mass: The quantity of matter in a substance; measured in kilograms 

Newton’s first law of motion: A body at rest remains at rest, or, if in motion, remains in motion 

at a constant velocity unless acted on by a net external force; also known as the law of inertia 

Newton’s second law of motion: The net external force Fnet on an object with mass m is 

proportional to and in the same direction as the acceleration of the object, a , and inversely 

proportional to the mass; defined mathematically as a = Fnet /m 

Newton’s third law of motion: whenever one body exerts a force on a second body, the first 

body experiences a force that is equal in magnitude and opposite in direction to the force that 

the first body exerts 

Net external force: The vector sum of all external forces acting on an object or system; causes 

a mass to accelerate 

Normal force: The force that a surface applies to an object to support the weight of the object; 

acts perpendicular to the surface on which the object rests 

Glossary 
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System: defined by the boundaries of an object or collection of objects being observed; all 

forces originating from outside of the system are considered external forces 

Tension: The pulling force that acts along a medium, especially a stretched flexible connector, 

such as a rope or cable; when a rope supports the weight of an object, the force on the object 

due to the rope is called a tension force 

Thrust: A reaction force that pushes a body forward in response to a backward force; rockets, 

airplanes, and cars are pushed forward by a thrust reaction force 

Weight: The force w due to gravity acting on an object of mass m ; defined mathematically as: 

w = mg , where g is the magnitude and direction of the acceleration due to gravity. 
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5 Further Applications of Newton’s Laws 

5.1 Friction  

5.2 Drag forces  

5.3 Elasticity: Stress and Strain  

5.4 Changes in Length—Tension and Compression: Elastic Modulus  

5.5 Sideways Stress: Shear Modulus 

Check your understanding 

Glossary 
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5 Further Applications of Newton’s Laws 

It is difficult to categorize forces into various types (aside from the four basic forces discussed 

in previous chapter). Knowing that a net force affects the motion, position, and shape of an 

object, it is useful at this point to look at some particularly interesting and common forces that 

will provide further applications of Newton’s laws of motion. We have in mind the forces of 

friction, air or liquid drag, and deformation. 

5.1 Friction 

Friction is a force that is around us all the time that opposes relative motion between systems 

in contact but also allows us to move. While a common force, the behavior of friction is actually 

very complicated and is still not completely understood. We have to rely heavily on 

observations for whatever understandings we can gain. However, we can still deal with its more 

elementary general characteristics and understand the circumstances in which it behaves. 

One of the simpler characteristics of friction is that it is parallel to the contact surface between 

systems and always in a direction that opposes motion or attempted motion of the systems 

relative to each other. If two systems are in contact and moving relative to one another, then the 

friction between them is called kinetic friction. But when objects are stationary, static friction 

can act between them; the static friction is usually greater than the kinetic friction between the 

objects. Figure 5.1 shows an example of frictional forces. 

 

Figure 9: Frictional forces, such as f , always oppose motion or attempted motion between objects in contact 

 The magnitude of static friction fs is 

fs ≤ μsN 

Where μs is the coefficient of static friction and N is the magnitude of the normal force. 

 The kinetic friction force fk between systems moving relative to one another is given by 

fk = μkN 

Where μk is the coefficient of kinetic friction. 
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5.2 Drag forces 

Another interesting force in everyday life is the force of drag on an object when it is moving in 

a fluid (either a gas or a liquid). You feel the drag force when you move your hand through 

water. You might also feel it if you move your hand during a strong wind. The faster you move 

your hand, the harder it is to move. You feel a smaller drag force when you tilt your hand so 

only the side goes through the air—you have decreased the area of your hand that faces the 

direction of motion. Like friction, the drag force always opposes the motion of an object. Unlike 

simple friction, the drag force is proportional to some function of the velocity of the object in 

that fluid. This functionality is complicated and depends upon the shape of the object, its size, 

its velocity, and the fluid it is in. For most large objects such as bicyclists, cars, and baseballs 

not moving too slowly, the magnitude of the drag force FD is found to be proportional to the 

square of the speed of the object. We can write this relationship mathematically as  

FD ∝ v2 . When taking into account other factors, this relationship becomes: 

FD =1/2CρAv2, 

Where C is the drag coefficient, A is the area of the object facing the fluid, and ρ is the density 

of the fluid. 

5.3 Elasticity: Stress and Strain 

If a bulldozer pushes a car into a wall, the car will not move but it will noticeably change shape. 

A change in shape due to the application of a force is a deformation. Even very small forces 

are known to cause some deformation. For small deformations, two important characteristics 

are observed. 

 First, the object returns to its original shape when the force is removed—that is, the 

deformation is elastic for small deformations.  

 Second, the size of the deformation is proportional to the force—that is, for small 

deformations, Hooke’s law is obeyed.  

 

 

 

 

 

 

 

 

Hook’s Law 

F = kΔL 

Where ΔL is the amount of deformation (the change in length, for example) produced by 

the force F , and k is a proportionality constant that depends on the shape and composition 

of the object and the direction of the force. 

ΔL =F/k 
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The proportionality constant k depends upon a number of factors for the material. For example, 

a guitar string made of nylon stretches when it is tightened, and the elongation ΔL is 

proportional to the force applied (at least for small deformations). Thicker nylon strings and 

ones made of steel stretch less for the same applied force, implying they have a larger k (see 

Figure 5.2). Finally, all three strings return to their normal lengths when the force is removed, 

provided the deformation is small 

 

 

Figure 10: The same force, in this case a weight ( w ), applied to three different guitar strings of identical length produces the 
three different deformations shown as shaded segments. The string on the left is thin nylon, the one in the middle is thicker 
nylon, 

5.4 Changes in Length—Tension and Compression: Elastic Modulus 

A change in length ΔL is produced when a force is applied to a wire or rod parallel to its length 

L0 , either stretching it (a tension) or compressing it. (See Figure 5.3) 

Experiments have shown that the change in length (ΔL) depends on only a few variables. As 

already noted, ΔL is proportional to the force F and depends on the substance from which the 

object is made. Additionally, the change in length is proportional to the original length L0 and 

inversely proportional to the cross-sectional area of the wire or rod. For example, a long guitar 

string will stretch more than a short one, and a thick string will stretch less than a thin one. We 

can combine all these factors into one equation for ΔL: 

ΔL = 1F/YA L0 
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Where ΔL is the change in length, F the applied force, Y is a factor, called the elastic modulus 

or Young’s modulus, that depends on the substance, A is the cross-sectional area, and L0 is the 

original length 

 

Figure 11: (a) Tension. The rod is stretched a length ΔL when a force is applied parallel to its length. (b) Compression. The 
same rod is compressed by forces with the same magnitude in the opposite direction. For very small deformations and 
uniform materials, ΔL 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

Stress 

The ratio of force to area, F/A, is defined as stress measured in N/m2 

Strain 

The ratio of the change in length to length, ΔL/L0, is defined as strain (a unitless 

quantity). In other words, 

stress = Y×strain   

 

Young Modulus 

Young Modulus=stress /strain 

                                   = (FL0)/A(Ln − L0)   

 



Chapter V: Further Applications of Newton’s Laws          

40 
 

5.5 Sideways Stress: Shear Modulus 

The shear modulus is defined as the ratio of shear stress to shear strain. It is also known as the 

modulus of rigidity. Figure 5.4 illustrates what is meant by a sideways stress or a shearing 

force. Here the deformation is called Δx and it is perpendicular to L0 ,rather than parallel as 

with tension and compression. Shear deformation behaves similarly to tension and compression 

and can be described with similar equations. The expression for shear deformation is 

Δx = 1F/SA L0 

Where S is the shear modulus and F is the force applied perpendicular to L0 and parallel to the 

cross-sectional area A 

 

Figure 12: Shearing forces, are applied perpendicular to the length L0 and parallel to the area A , producing a deformation 
Δx . Vertical forces are not shown, but it should be kept in mind that in addition to the two shearing forces, F , there must be 
supporting 

 

 

 

 

 

5.6 Changes in Volume: Bulk Modulus 

An object will be compressed in all directions if inward forces are applied evenly on all its 

surfaces as in Figure 5.5. It is relatively easy to compress gases and extremely difficult to 

compress liquids and solids. For example, air in a wine bottle is compressed when it is corked. 

But if you try corking a brim-full bottle, you cannot compress the wine—some must be removed 

if the cork is to be inserted. The reason for these different compressibilities is that atoms and 

molecules are separated by large empty spaces in gases but packed close together in liquids and 

solids. To compress a gas, we must force its atoms and molecules closer together. To compress 

liquids and solids, we must actually compress their atoms and molecules, and very strong 

electromagnetic forces in them oppose this compression. 

Shear deformation 

Δx = 1F/SA L0 

Where S is the shear modulus and F is the force applied perpendicular to L0 and parallel to 

the cross-sectional area A 
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Figure 13: An inward force on all surfaces compresses this cube. Its change in volume is proportional to the force per 

unit area and its original volume, and is related to the compressibility of the substance. 

 

We can describe the compression or volume deformation of an object with an equation. First, 

we note that a force “applied evenly” is defined to have the same stress, or ratio of force to area 

F/A on all surfaces. The deformation produced is a change in volume ΔV, which is found to 

behave very similarly to the shear, tension, and compression previously discussed. (This is not 

surprising, since a compression of the entire object is equivalent to compressing each of its 

three dimensions.) The relationship of the change in volume to other physical quantities is given 

by: 

ΔV = 1F/BA V0, 

Where B is the bulk modulus, V0 is the original volume, and F/A is the force per unit area 

applied uniformly inward on all surfaces 

 

 

 

 

 

 

 

 

 

 

 

 

Bulk Modulus 

B = ΔP /(ΔV/V0) 

Where ΔP is the change of the pressure or force applied per unit area on the material, ΔV is 

the change of the volume of the material due to the compression and V0 is the initial 

volume of the material in the units of in the English system and N/m2 in the metric system 
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Task1: Answer the following questions 

 

1. Any object can be deformed by applying a force to the object. An object is elastic if 

________ after the force is removed. However, if the object has been deformed beyond 

its________, it will remain in a deformed state. 

2. The stress on an object is defined as the ratio of the________ to the_________. 

3. The strain of an object is defined as the ratio of the________ to the_________. 

4. The generalized statement of Hooke's law states that________ is proportional to________ 

of the system. 

5. Young's modulus is a constant with units of _________, which characterizes the response 

of a solid to _________ and which has a magnitude equal to ________. 

6. The bulk modulus of a material is a constant with units of ________, which characterizes 

the response of a material to _________. 

7. The shear modulus, also called the________, is a constant with units of _________, which 

characterize the response of a material to_________ and which has a magnitude equal to 

_________. 

 

Keys: 

1. It returns to its original state, elastic limit  

2. Applied force, cross-sectional area  

3. Change in a spatial variable, original 

value of that variable  

4. Strain, stress  

5. N/m2 , forces applied to change its length, 

FL/AΔL 

6. N/m2 , forces applied to change its 

volume without changing its shape, 

FV/AΔL  

7. Modulus of rigidity, N/m2 force applied 

to change its shape without changing its  

volume, (F/A)φ  

 

 

Task2: 

1.  The modulus of elasticity is 

dimensionally equivalent to 

A. strain 

B. stress 

C. surface tension 

D. Poisson’s ratio 

 

2. If by applying a force, the shape of 

a body is changed, then the 

corresponding stress is known as 

A. Tensile stress 

B. Bulk stress 

C. Shearing stress 

D. Compressive stress 
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3. According to Hooke’s law of 

elasticity, within elastic limits, if 

the stress is increased, the ratio of 

stress to strain 

A. increases 

B. decreases 

C. becomes zero 

D. remains constant 

 

4. Which one of he following does not 

affect the elasticity of a substance? 

A. Hammering 

B. Adding impurity to the substance 

C. Changing the dimensions 

D. Change in the temperature 

 

5. The bulk modulus of a fluid is 

inversely proportional to the 

A. Change in pressure 

B. Volume of the fluid 

C. Density of the fluid 

D. Change in its volume 

 

6. Shearing strain is given by: 

A. Deforming force 

B. Shape of shear 

C. Angle of shear 

D. Change in volume of the body 

 

7. When impurities are added to an 

elastic substance, its elasticity 

A. increases 

B. decreases 

C. becomes zero 

D. maybe increases or decreases 

 

8. If a material is heated and annealed, 

then its elasticity is 

A. increased 

B. decreased 

C. not changed 

D. becoming zero 

9. The Young modulus for a plastic 

body is 

A. one 

B. zero 
C. infinity 

D. less than one 

 

 

 

Deformation: change in shape due to the application of force 

Drag force: FD, found to be proportional to the square of the speed of the object; 

mathematically: 

FD ∝ v2 

FD =1/2CρAv2 

Friction: a force that opposes relative motion or attempts at motion between systems in 

contact 

Hooke’s law: proportional relationship between the force F on a material and the deformation 

ΔL it causes, F = kΔL 

Kinetic friction: a force that opposes the motion of two systems that are in contact and 

moving relative to one another 

Magnitude of kinetic friction: fk = μkN , where μk is the coefficient of kinetic friction 

Magnitude of static friction: fs ≤ μs N , where μs is the coefficient of static friction and N is 

the magnitude of the normal force 

Glossary 
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Stokes’ law: Fs = 6πrηv , where r is the radius of the object, η is the viscosity of the fluid, 

and v is the object’s velocity 

Shear deformation: deformation perpendicular to the original length of an object 

Static friction: a force that opposes the motion of two systems that are in contact and are not 

moving relative to one another 

Strain: ratio of change in length to original length 

Stress: ratio of force to area 

Tensile strength: measure of deformation for a given tension or compression 
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6 Introduction to oscillatory systems and waves  

6.1 Hooke’s Law: Stress and Strain Revisited  

6.2 Energy in Hooke’s Law of Deformation  

6.3 Period and Frequency in Oscillations  

6.4 Simple Harmonic Motion: A Special Periodic Motion  

6.5 The Simple Pendulum  

6.6 Uniform Circular Motion and Simple Harmonic Motion  

6.7 Damped Harmonic Motion  

6.8 Forced Oscillations and Resonance  

6.9 Waves  

6.9.1 Transverse and Longitudinal Waves  

Check your understanding 

Glossary 

 

 

 

 

VI. OSCILLATORY MOTION AND WAVES 



Chapter VI: Oscillatory Systems and Waves       

46 
 

6 Introduction to oscillatory systems and waves 

What do an ocean buoy, a child in a swing, the cone inside a speaker, a guitar, atoms in a crystal, 

the motion of chest cavities, and the beating of hearts all have in common? They all oscillate—

-that is, they move back and forth between two points. Many systems oscillate, and they have 

certain characteristics in common. All oscillations involve force and energy. We push a child 

in a swing to get the motion started. The energy of atoms vibrating in a crystal can be increased 

with heat. We put energy into a guitar string when you pluck it. Some oscillations create waves. 

A guitar creates sound waves. We can make water waves in a swimming pool by slapping the 

water with your hand. 

We can no doubt think of other types of waves. Some, such as water waves, are visible. Some, 

such as sound waves, are not. But every wave is a disturbance that moves from its source and 

carries energy. Other examples of waves include earthquakes and visible light. Even subatomic 

particles, such as electrons, can behave like waves. 

By studying oscillatory motion and waves, we shall find that a small number of underlying 

principles describe all of them and that wave phenomena are more common than we have ever 

imagined. We begin by studying the type of force that underlies the simplest oscillations and 

waves. We will then expand our exploration of oscillatory motion and waves to include 

concepts such as simple harmonic motion, uniform circular motion, and damped harmonic 

motion. Finally, we will explore what happens when two or more waves share the same space, 

in the phenomena known as superposition and interference. 

6.1 Hooke’s Law: Stress and Strain Revisited 

Newton’s first law implies that an object oscillating back and forth is experiencing forces. 

Without force, the object would move in a straight line at a constant speed rather than oscillate. 

Consider, for example, plucking a plastic ruler to the left as shown in Figure 6.1. The 

deformation of the ruler creates a force in the opposite direction, known as a restoring force. 

Once released, the restoring force causes the ruler to move back toward its stable equilibrium 

position, where the net force on it is zero. However, by the time the ruler gets there, it gains 

momentum and continues to move to the right, producing the opposite deformation. It is then 

forced to the left, back through equilibrium, and the process is repeated until dissipative forces 

dampen the motion. These forces remove mechanical energy from the system, gradually 

reducing the motion until the ruler comes to rest. 
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Figure 14: plastic ruler oscillations 

The simplest oscillations occur when the restoring force is directly proportional to 

displacement. When stress and strain were covered in Newton’s Third Law of Motion, the 

name was given to this relationship between force and displacement was Hooke’s law: 

F = −kx. 

Here, F is the restoring force, x is the displacement from equilibrium or deformation, and k is 

a constant related to the difficulty in deforming the system. The minus sign indicates the 

restoring force is in the direction opposite to the displacement. 

 

Figure 15: ruler equilibrium position 

 

Explanation: (a) The plastic ruler has been released, and the restoring force is returning the 

ruler to its equilibrium position. (b) The net force is zero at the equilibrium position, but the 

ruler has momentum and continues to move to the right. (c) The restoring force is in the opposite 

direction. It stops the ruler and moves it back toward equilibrium again. (d) Now the ruler has 

momentum to the left. (e) In the absence of damping (caused by frictional forces), the ruler 

reaches its original position. From there, the motion will repeat itself. 
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The force constant k is related to the rigidity (or stiffness) of a system—the larger the force 

constant, the greater the restoring force, and the stiffer the system. The units of k are newtons 

per meter (N/m). For example, k is directly related to Young’s modulus when we stretch a 

string. 

6.2 Energy in Hooke’s Law of Deformation 

In order to produce a deformation, work must be done. That is, a force must be exerted through 

a distance, whether you pluck a guitar string or compress a car spring. If the only result is 

deformation, and no work goes into thermal, sound, or kinetic energy, then all the work is 

initially stored in the deformed object as some form of potential energy. The potential energy 

stored in a spring is PEel =1/2kx2. Here, we generalize the idea to elastic potential energy for a 

deformation of any system that can be described by Hooke’s law. Hence, 

PEel =1/2kx2 

Where PEel is the elastic potential energy stored in any deformed system that obeys Hooke’s 

law and has a displacement x from equilibrium and a force constant k. 

6.3 Period and Frequency in Oscillations 

When we pluck a guitar string, the resulting sound has a steady tone and lasts a long time. Each 

successive vibration of the string takes the same time as the previous one. We define periodic 

motion to be a motion that repeats itself at regular time intervals (figure 6.3), such as exhibited 

by the guitar string or by an object on a spring moving up and down. The time to complete one 

oscillation remains constant and is called the period T. Its units are usually seconds, but may be 

any convenient unit of time. The word period refers to the time for some event whether 

repetitive or not; but we shall be primarily interested in periodic motion, which is by definition 

repetitive. A concept closely related to period is the frequency of an event. For example, if you 

get a paycheck twice a month, the frequency of payment is two per month and the period 

between checks is half a month. Frequency f is defined to be the number of events per unit time. 

For periodic motion, frequency is the number of oscillations per unit time. The relationship 

between frequency and period is 

f = 1/T 

A cycle is one complete oscillation. Note that a vibration can be a single or multiple event, 

whereas oscillations are usually repetitive for a significant number of cycles. 
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Figure 16: guitar strings vibrating 

6.4 Simple Harmonic Motion: A Special Periodic Motion 

The oscillations of a system in which the net force can be described by Hooke’s law are of 

special importance, because they are very common. They are also the simplest oscillatory 

systems. Simple Harmonic Motion (SHM) is the name given to oscillatory motion for a system 

where the net force can be described by Hooke’s law, and such a system is called a simple 

harmonic oscillator. If the net force can be described by Hooke’s law and there is no damping 

(by friction or other non-conservative forces), then a simple harmonic oscillator will oscillate 

with equal displacement on either side of the equilibrium position, as shown for an object on a 

spring in Figure 6.4. The maximum displacement from equilibrium is called the amplitude X . 

The units for amplitude and displacement are the same, but depend on the type of oscillation. 

For the object on the spring, the units of amplitude and displacement are meters; whereas for 

sound oscillations, they have units of pressure (and other types of oscillations have yet other 

units). Because amplitude is the maximum displacement, it is related to the energy in the 

oscillation. 
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Figure 17 : an object attached to a spring sliding on a frictionless surface is an uncomplicated simple harmonic 

oscillator. When displaced from equilibrium, the object performs simple harmonic motion that has an amplitude 

X and a period T . The object’s maximum speed occurs as it passes through equilibrium. The stiffer the spring is, 

the smaller the period T . The greater the mass of the object is, the greater the period T  

 

What is so significant about simple harmonic motion? One special thing is that the period T 

and frequency f of a simple harmonic oscillator are independent of amplitude. The string of a 

guitar, for example, will oscillate with the same frequency whether plucked gently or hard. 

Because the period is constant, a simple harmonic oscillator can be used as a clock. 

Two important factors do affect the period of a simple harmonic oscillator. The period is related 

to how stiff the system is. A very stiff object has a large force constant k , which causes the 

system to have a smaller period. For example, you can adjust a diving board’s stiffness—the 

stiffer it is, the faster it vibrates, and the shorter its period. Period also depends on the mass of 

the oscillating system. The more massive the system is, the longer the period. For example, a 

heavy person on a diving board bounces up and down more slowly than a light one. 

In fact, the mass m and the force constant k are the only factors that affect the period and 

frequency of simple harmonic motion. 
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6.5 The Simple Pendulum  

Pendulums are in common usage. Some have crucial uses, such as in clocks; some are for fun, 

such as a child’s swing; and some are just there, such as the sinker on a fishing line. For small 

displacements, a pendulum is a simple harmonic oscillator. A simple pendulum is defined to 

have an object that has a small mass, also known as the pendulum bob, which is suspended 

from a light wire or string, such as shown in Figure 6.5. 

Exploring the simple pendulum a bit further, we can discover the conditions under which it 

performs simple harmonic motion, and we can derive an interesting expression for its period. 

 

 

 

 

 

 

 

 

Figure 18: Simple pendulum 

We begin by defining the displacement to be the arc length s . We see from Figure 6.5 that the 

net force on the bob is tangent to the arc and equals −mg sin θ . (The weight mg has components 

mg cos θ along the string and mg sin θ tangent to the arc.) Tension in the string exactly cancels 

the component mg cos θ parallel to the string. This leaves a net restoring force back toward the 

equilibrium position at θ = 0. 

Now, if we can show that the restoring force is directly proportional to the displacement, then 

we have a simple harmonic oscillator. In trying to determine if we have a simple harmonic 

oscillator, we should note that for small angles (less than about 15º ), sin θ ≈ θ ( sin θ and θ 

Period of Simple Harmonic Oscillator 

The period of a simple harmonic oscillator is given by: 

T = 2π √m/k 

and, because f = 1 / T , the frequency of a simple harmonic oscillator is 

f = 1/2π√k/m 

Note that neither T nor f has any dependence on amplitude 
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differ by about 1% or less at smaller angles). Thus, for angles less than about 15º , the restoring 

force F is 

F ≈ −mgθ. 

The displacement s is directly proportional to θ . When θ is expressed in radians, the arc length 

in a circle is related to its radius ( L in this instance) by: 

s = Lθ, 

so that 

θ = s/L 

 

For small angles, then, the expression for the restoring force is: 

F ≈ −mg/L s 

This expression is of the form: 

F = −kx, 

Where the force constant is given by k = mg / L and the displacement is given by x = s . For 

angles less than about 15º, the restoring force is directly proportional to the displacement, and 

the simple pendulum is a simple harmonic oscillator. 

Using this equation, we can find the period of a pendulum for amplitudes less than about 15º. 

For the simple pendulum: 

T = 2π √m/k = 2π √m/mg / L 

Thus, 

T = 2π √L/g 

For the period of a simple pendulum. This result is interesting because of its simplicity. The 

only things that affect the period of a simple pendulum are its length and the acceleration due 

to gravity. The period is completely independent of other factors, such as mass. As with simple 

harmonic oscillators, the period T for a pendulum is nearly independent of amplitude, especially 

if θ is less than about 15º. Even simple pendulum clocks can be finely adjusted and accurate. 

Note the dependence of T on g. If the length of a pendulum is precisely known, it can actually 

be used to measure the acceleration due to gravity. 

6.6 Uniform Circular Motion and Simple Harmonic Motion 

There is an easy way to produce simple harmonic motion by using uniform circular motion. 

Figure 6.6 shows one way of using this method. A ball is attached to a uniformly rotating 

vertical turntable, and its shadow is projected on the floor as shown. The shadow undergoes 

simple harmonic motion. Hooke’s law usually describes uniform circular motions (ω constant) 
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rather than systems that have large visible displacements. So observing the projection of 

uniform circular motion, as in Figure 6.7, is often easier than observing a precise large-scale 

simple harmonic oscillator. 

 

If studied in sufficient depth, simple harmonic motion produced in this manner can give 

considerable insight into many aspects of oscillations and waves and is very useful 

mathematically. In our brief treatment, we shall indicate some of the major features of this 

relationship and how they might be useful. 

 

 

 

Figure 19: Example of uniform circular motion                                           

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Simple harmonic motion 
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6.7 Damped Harmonic Motion 

A guitar string stops oscillating a few seconds after being plucked. To keep a child happy on a 

swing, you must keep pushing. Although we can often make friction and other non-conservative 

forces negligibly small, completely undamped motion is rare. In fact, we may even want to 

damp oscillations, such as with car shock absorbers. 

For a system that has a small amount of damping, the period and frequency are nearly the same 

as for simple harmonic motion, but the amplitude gradually decreases as shown in Figure 6.8. 

This occurs because the non-conservative damping force removes energy from the system, 

usually in the form of thermal energy. In general, energy removal by non-conservative forces 

is described as: 

Wnc = Δ(KE + PE), 

Where Wnc is work done by a non-conservative force (here the damping force). For a damped 

harmonic oscillator, Wnc is negative because it removes mechanical energy (KE + PE) from 

the system. 

 

Figure 21: a harmonic oscillator with a small amount of damping 

6.8 Forced Oscillations and Resonance 

Forced oscillations occur when an oscillating system is driven by a periodic force that is 

external to the oscillating system. In such a case, the oscillator is compelled to move at the 

frequency νD = ωD/2π of the driving force. The physically interesting aspect of a forced 

oscillator is its response—how much it moves—to the imposed driving force. Let us, therefore, 

examine qualitatively the response of an oscillator to a driving force. 

6.9 Waves 

What do we mean when we say something is a wave? The most intuitive and easiest wave to 

imagine is the familiar water wave. More precisely, a wave is a disturbance that propagates, or 

moves from the place it was created. For water waves, the disturbance is in the surface of the 

water, perhaps created by a rock thrown into a pond or by a swimmer splashing the surface 

repeatedly. For sound waves, the disturbance is a change in air pressure, perhaps created by the 

oscillating cone inside a speaker. For earthquakes, there are several types of disturbances, 
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including disturbance of Earth’s surface and pressure disturbances under the surface. Even radio 

waves are most easily understood using an analogy with water waves. 

Visualizing water waves is useful because there is more to it than just a mental image. Water 

waves exhibit characteristics common to all waves, such as amplitude, period, frequency and 

energy. All wave characteristics can be described by a small set of underlying principles. 

A wave is a disturbance that propagates, or moves from the place it was created. The simplest 

waves repeat themselves for several cycles and are associated with simple harmonic motion. 

Let us start by considering the simplified water wave in Figure 6.9. The wave is an up and down 

disturbance of the water surface. It causes a sea gull to move up and down in simple harmonic 

motion as the wave crests and troughs (peaks and valleys) pass under the bird. The time for one 

complete up and down motion is the wave’s period T. The wave’s frequency is  

f = 1 / T , as usual. 

The wave itself moves to the right in the figure. This movement of the wave is actually the 

disturbance moving to the right, not the water itself (or the bird would move to the right). We 

define wave velocity vw to be the speed at which the disturbance moves. Wave velocity is 

sometimes also called the propagation velocity or propagation speed, because the disturbance 

propagates from one location to another. 

 

Figure 22: an example of an idealized ocean wave 

 

The water wave in the figure also has a length associated with it, called its wavelength λ, the 

distance between adjacent identical parts of a wave. (λ is the distance parallel to the direction 

of propagation.) The speed of propagation vw is the distance the wave travels in a given time, 

which is one wavelength in the time of one period. In equation form, that is 
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vw = λ/T 

or 

vw = fλ. 

This fundamental relationship holds for all types of waves. For water waves, vw is the speed of 

a surface wave; for sound, vw is the speed of sound; and for visible light, vw is the speed of light, 

for example. 

6.9.1 Transverse and Longitudinal Waves 

A simple wave consists of a periodic disturbance that propagates from one place to another. 

The wave in Figure 6.10 propagates in the horizontal direction while the surface is disturbed in 

the vertical direction. Such a wave is called a transverse wave or shear wave; in such a wave, 

the disturbance is perpendicular to the direction of propagation. In contrast, in a longitudinal 

wave or compressional wave, the disturbance is parallel to the direction of propagation. Figure 

6.11 shows an example of a longitudinal wave. The size of the disturbance is its amplitude X 

and is completely independent of the speed of propagation vw. 

 

 

Figure 23: An example of a transverse wave 

 

 

Figure 24: An example of a longitudinal wave 

 

Waves may be transverse, longitudinal, or a combination of the two. Water waves are actually 

a combination of transverse and longitudinal. Sound waves in air and water are longitudinal. 

Their disturbances are periodic variations in pressure that are transmitted in fluids. Fluids do 
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not have appreciable shear strength, and thus the sound waves in them must be longitudinal or 

compressional. Sound in solids can be both longitudinal and transverse. 

 

 

Figure 25: Transverse and longitudinal waves: The wave on a guitar string is transverse. The sound wave rattles a 

sheet of paper in a direction that shows the sound wave is longitudinal 

 

Task1: label the following:  

 

 

 

Task2: answer the following questions

 

1. While moving from deep water to 

shallow water 

A. frequency of water waves decrease 

B. frequency of water waves increase 

C. frequency of water waves stays same 
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D. None of above 

 

2. Waves that travel in a direction 

perpendicular to direction of vibration are 

known as 

A. Transverse waves 

B. Longitudinal waves 

C. Sound waves 

D. None of above 

 

3. If wavelength of a wave is denoted as 'λ' 

and amplitude is denoted as 'A', then 

shortest horizontal distance between any 

crest and trough is equal to 

A. 1 ⁄ 2 of λ 

B. λ 

C. 1 ⁄ 2 of A 

D. A 

 

4. Speed of wave 'v' is given by 

A. wavelength of wave ⁄ frequency of 

wave 

B. wavelength of wave × frequency of 

wave 

C. frequency of wave ⁄ wavelength of 

wave 

D. None of above 

 

5. Which of following is not a longitudinal 

wave? 

A. Ultrasonic wave 

B. Infrasonic wave 

C. Infrared wave 

D. Seismic wave 

 

6. If wavelength of a wave moving on a 

slinky spring with a frequency of 5 Hz is 

equal to 0.5 m then speed of wave is equal 

to 

A. 0.1 m s-1 

B. 2.5 m s-1 

C. 10 m s-1 

D. None of above 

 

7. For a constant frequency, wavelength of 

an electromagnetic wave is 

A. directly proportional to its velocity 

B. inversely proportional to its velocity 

C. independent of its velocity 

D. None of above 

 

8. All waves can be classified into two 

categories which are 

A. Sound waves and electromagnetic 

waves 

B. Transverse waves and electromagnetic 

waves 

C. Longitudinal waves and 

electromagnetic waves 

D. Transverse waves and longitudinal 

waves 

 

9. If amplitude of a wave is denoted as 'A', 

then vertical displacement between a crest 

and a trough of a wave in terms of 'A' 

would be 

A. 1 ⁄ 2 of A 

B. A 

C. 2A 

D. None of above 

 

10. Statement related to waves that is 

incorrect is 

A. It provides a mechanism for transfer of 

energy from one point to another 

without transfer of material 

B. All waves have same speed i.e. equal 

to 3×108 m s-1 

C. The source of any wave is vibration or 

oscillation 

D. All of above 

 

11. Wave that does not belong to EM 

spectrum is 

A. Gamma rays 

B. Radio waves 

C. Sound waves 

D. Infrared waves 
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12. Time taken to complete a wave is 

termed as 

A. span 

B. period 

C. life 

D. duration 

 

13. Any two shortest points in a wave that 

are in phase are termed as 

A. wave distance 

B. wavelength 

C. phase length 

D. amplitude 

 

14. Motion that is repeated at regular 

intervals is termed as 

A. Vibration 

B. Oscillation 

C. Ventilation 

D. Periodic motion 

 

15. A pendulum bob is a good example of 

A. Vibration 

B. Oscillation 

C. Ventilation 

D. Periodic motion 

 

16. If we increase wavelength, frequency 

would 

A. increase 

B. decrease 

C. remain same 

D. may increase or decrease 

 

17. Waves transfer energy from one point 

to other. 

A. It's true 

B. Its false 

C. its neutral 

D. None of others 

 

18. Ups and downs in transverse waves are 

termed as 

A. compression and rarefaction 

B. crests and rarefactions 

C. compressions and troughs 

D. crests and troughs 

 

19. Maximum displacement from 

equilibrium position is 

A. frequency 

B. amplitude 

C. wavelength 

D. period 

 

20. Displacement-time graph depicting an 

oscillatory motion is 

A. cos curve 

B. sine curve 

C. tangent curve 

D. straight line 

 

21. In s.h.m, velocity at equilibrium 

position is 

A. minimum 

B. constant 

C. maximum 

D. zero 

 

22. Natural frequency of a guitar string can 

be changed by changing it's 

A. area 

B. diameter 

C. length 

D. stiffness 

 

23. Over-damping results in 

A. slower return to equilibrium 

B. faster return to equilibrium 

C. equilibrium is never achieved 

D. arrhythmic return to equilibrium 

 

24. Our eyes detect oscillations up to 

A. 8 Hz 

B. 9 Hz 

C. 6 Hz 

D. 5 Hz 
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25. For s.h.m, maximum speed is 

proportional to 

A. wavelength 

B. acceleration 

C. time 

D. frequency 

 

26. A force that acts to return mass to it's 

equilibrium position is called 

A. frictional force 

B. restoring force 

C. normal force 

D. contact force 

 

27. In cars, springs are damped by 

A. shock absorbers 

B. engine 

C. tyres 

D. brake pedals 

 

28. If time period of an oscillation is 0.40 

s, then it's frequency is 

A. 2 Hz 

B. 2.5 Hz 

C. 3 Hz 

D. 3.5 Hz 

 

29. As amplitude of resonant vibrations 

decreases, degree of damping 

A. increases 

B. remains same 

C. decreases 

D. varies 

 

30. Oscillations become damped due to 

A. normal force 

B. friction 

C. tangential force 

D. parallel force 

 

31. In s.h.m, object's acceleration depends 

upon 

A. displacement from equilibrium 

position 

B. magnitude of restoring force 

C. both A and B 

D. force exerted on it 

 

32. Angular frequency of s.h.m is equal to 

A. 2π 

B. 2πf 

C. 2f 

D. 1⁄T 

 

33. For a resonating system it should 

oscillate 

A. bound 

B. only for some time 

C. freely 

D. for infinite time 

 

34. Velocity at equilibrium position is 

A. constant 

B. minimum 

C. maximum 

D. zero 

 

35. If swing moves from right to left, then 

velocity is 

A. negative 

B. positive 

C. constant 

D. zero 

 

36. Acceleration is directly related to 

A. displacement 

B. negative of displacement 

C. velocity 

D. negative of speed 

 

37. Gradient of velocity-time graph gives 

A. force 

B. frequency 

C. wavelength 

D. acceleration 
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38. Potential energy of system is maximum 

at 

A. extreme position 
B. mean position 

C. in between extreme and mean position 

D. moderate position 

 

39. In s.h.m, acceleration is always 

directed towards the 

A. equilibrium position 

B. mean position 

C. tangent to the motion 

D. downwards 

 

40. Number of oscillations per unit time is 

A. amplitude 

B. wavelength 

C. frequency 

D. peri
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Amplitude: the maximum displacement from the equilibrium position of an object oscillating 

around the equilibrium position 

Antinode: the location of maximum amplitude in standing waves 

Beat frequency: the frequency of the amplitude fluctuations of a wave 

Constructive interference: when two waves arrive at the same point exactly in phase; that is, 

the crests of the two waves are precisely aligned, as are the troughs 

Critical damping: the condition in which the damping of an oscillator causes it to return as 

quickly as possible to its equilibrium position without oscillating back and forth about this 

position 

Deformation: displacement from equilibrium 

Destructive interference: when two identical waves arrive at the same point exactly out of 

phase; that is, precisely aligned crest to trough 

Elastic potential energy: potential energy stored as a result of deformation of an elastic object, 

such as the stretching of a spring 

Force constant: a constant related to the rigidity of a system: the larger the force constant, the 

more rigid the system; the force constant is represented by k 

Frequency: number of events per unit of time 

Fundamental frequency: the lowest frequency of a periodic waveform 

Intensity: power per unit area 

Longitudinal wave: a wave in which the disturbance is parallel to the direction of propagation 

Natural frequency: the frequency at which a system would oscillate if there were no driving 

and no damping forces 

Nodes: the points where the string does not move; more generally, nodes are where the wave 

disturbance is zero in a standing wave 

Oscillate: moving back and forth regularly between two points 

Over damping: the condition in which damping of an oscillator causes it to return to 

equilibrium without oscillating; oscillator moves more slowly toward equilibrium than in the 

critically damped system 

Overtones: multiples of the fundamental frequency of a sound 

Periodic motion: motion that repeats itself at regular time intervals 

Period: time it takes to complete one oscillation 

Resonance: the phenomenon of driving a system with a frequency equal to the system's natural 

frequency 

Glossary 
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Resonate: a system being driven at its natural frequency 

Restoring force: force acting in opposition to the force caused by a deformation 

Simple Harmonic Motion: the oscillatory motion in a system where the net force can be 

described by Hooke’s law 

Simple Harmonic Oscillator: device that implements Hooke’s law, such as a mass that is 

attached to a spring, with the other end of the spring being connected to a rigid support such as 

a wall 

Simple pendulum: an object with a small mass suspended from a light wire or string 

Superposition: the phenomenon that occurs when two or more waves arrive at the same point 

Transverse wave: a wave in which the disturbance is perpendicular to the direction of 

propagation 

Under damping: the condition in which damping of an oscillator causes it to return to 

equilibrium with the amplitude gradually decreasing to zero; system returns to equilibrium 

faster but overshoots and crosses the equilibrium position one or more times 

Wave velocity: the speed at which the disturbance moves. Also called the propagation velocity 

or propagation speed 

Wavelength: the distance between adjacent identical parts of a wave 

Wave: a disturbance that moves from its source and carries energy 
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