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Nonlinear Observer and Backstepping Control 
of Quadrotor Unmanned Aerial Vehicle 

 
 

M. A. Larbi, K. Zemalache Meguenni, Y. Meddahi, M. Litim 
 
 
Abstract – This article presents the general concept of two nonlinear observers, such as high 
gain, sliding mode, adapted with nonlinear Backstepping control of quadrotor. The Positions is 
estimated by observers and set against reaction for control. The observatory technique using for 
estimated the non-measurable states has fine to reduce the number of sensors embedded in the x4- 
flying system. Several simulation tests in Simulink / Matlab are carried and takes into account an 
external disturbances (wind) to demonstrate the performance of the system controller-observer. 
Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
,′O)ܤ x, y, z) Frame attached to G 
 Inertial frame with Ez  upwards (ܼ,ܻ,ܺ,ܱ)ܧ
ߦ = ,ݕ,ݔ]  Position vector ்[ݖ
ߙ =  Euler angles yaw, pitch and roll ்[߰,ߠ,߮]
R Rotation matrix 
G Vehicle center of mass 
m Total mass of the vehicle 
߱ Angular velocity of rotor 

i (i =1,4), rad/s 
U1 Collective force, N 
ܬ = ,ݔܫ)݃ܽ݅݀ ,ݕܫ  Body inertia ( ݖܫ
  Force developed by rotor, iܨ
l Distance from G to the rotor, i 
߬ Moment according to B frame 

I. Introduction 
The intention of the researchers to humanize the 

machine, their will to reproduce the capacities human or 
animal of perception and action in the robotized systems 
and with the miniaturization of the sensors, the actuators 
and the technological maturity of embarked electronics; 
the advanced in the automatic and the artificial 
intelligence led to the quick evolution of the flying robots 
UAV [1]-[22]. These air vehicles caused a great interest 
thanks to their, maneuverability, capacity to carry out 
vertical takeoffs and landings and their large field of 
application as well military as civil, especially when the 
human intervention becomes difficult or dangerous. 

A good control of a process passes in general by good 
information on this last. To ensure optimal control, it is 
also necessary to have knowledge complete or partial of 
the state of the system considered. However, in much of 
situations practical, for technical reasons or economic 
(construction, positioning and/or cost of the sensors), it is 

not always possible to reach all the variables of state of a 
system. Consequently, one is often brought to what is 
called rebuild the state of the system by using a 
«software sensor» or an observer. 

The observer is a dynamic system based on the 
knowledge of the mathematical model describing the 
behavior of a system and using the entries and the 
measurements acquired on this one in order to rebuild the 
variables of state.  

The use of an observer can be planned to answer three 
categories of objectives to knowing, the monitoring, the 
detection of failures and control (Fig. 1). 

The rebuilding of the state of a dubious system is also 
a traditional problem of the automatic. Luenberger [15] 
studied a reconstruction of state, to which its name was 
allotted. The observer of Luenberger is not always 
sufficient, because the error in estimation generated by 
this observer for a dubious system or at unknown entries 
does not converge forcing towards the zero value.  

To cure this problem, we can use the observers of the 
singular systems [16] or the observers at unknown entries 
[17], the problem of design of observers with action 
proportional and integral. 

An observer-controller in [19], the observer is with 
sliding mode of a higher order, it with the absolute 
position and the angle of the lace, it rebuilds speeds of 
the helicopter and estimating the disturbances. As in [20], 
the observer is a differentiator with slipping mode of 
order 2 which considers the orders virtual of the 
Backstepping. 

In this paper, the model form presented [2] that 
established by Lozano [6] by the method of Euler-
Lagrange and that of Bouabdallah [4]. 

Then, the Backstepping controller and motion 
planning are combined to stabilize the helicopter by 
using the point to point steering stabilization. Modeling 
is briefly described Section II. 
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Section III describes Backstepping controllers. Section 
IV, synthesis of non linier observer is presented, In 
Section V, simulation results are presented followed by 
Robustness consideration in Section V. Finally, some 
conclusions and future work are given in the last section. 

 

 
 

Fig. 1. Objectives of observer 

II. Dynamic Modeling of Quadrotor 
The mini quadrotor is four rotors helicopter, Fig. 2, 

each rotor consists of an electrical DC motor, a drive 
gear and propeller. The two pairs of propellers (1, 3) and 
(2, 4) turn in opposite directions. Forward motion is 
accomplished by increasing the speed of the rear rotor 
while simultaneously reducing the forward rotor by the 
same amount. 

Aft, left and right motion work in the same way. Yaw 
command is accomplished by accelerating the two 
clockwise turning rotors while decelerating the counter-
clockwise turning rotors. This helicopter is one of the 
most complex flying systems that exist. This is due partly 
to the number of physical effects (Aerodynamic effects, 
gravity, gyroscopic, friction and inertial counter torques) 
acting on the system [2]. We consider a local reference 
airframe ܤ(ܱ′, ,ݕ,ݔ  attached to the center of mass G of (ݖ
the vehicle. The center of the mass is located at the 
intersection of the two rigid bars. The inertial frame is 
denoted by ܧ(ܱ,ܺ,ܻ,ܼ) such that the vertical direction 
Ez is upwards. The absolute position of center of mass of 
quadrotor is described by ߦ = ,ݕ,ݔ]  and its attitude , ்[ݖ
by the three Euler’s angles ߙ =  these three , ்[߰,ߠ,߮]
angles are respectively pitch angle, roll angle and yaw 
angle. 

 

 
 

Fig. 2. Quadrotor configuration model 

The transformation rotation between the earth 
reference frame and the body reference frame is given by 
the following matrix: 
 

ܴ = ቌ
టܥఏܥ టܵఏܵథܥ − థܵటܥ టܵఏܥథܥ + ܵథܵట
ఏܵటܥ ܵఏܵథܵట + టܥథܥ థܵఏܵటܥ − టܵథܥ
ܵఏ ఏܵథܥ థܥఏܥ

ቍ (1)

 
with S(.) and C(.) represent sin(.) and cos(.) respectively. 

II.1. Translation Motion 

Under these assumptions, it is possible to describe the 
fuselage dynamics as that of a rigid body in space to 
which come to be added the aerodynamic forces caused 
by the rotation of the rotors. Using the formalism of 
Newton-Euler, the dynamic equations are written in the 
following form: 
 

൞
ܴ̇ = ܴܵ(Ω)                               
ܨ + ௗ௧ܨ + ܨீ =                ̈ߦ݉
߬ − ߬ − ߬ = ߗ̇ܬ + ߗ ∧ ߗܬ

 (2)

 
where m is the mass of the structure and  ܬ =
,ݔܫ)݃ܽ݅݀ ,ݕܫ ( ݖܫ ∈ ܴ3 × 3 is a symmetric positive 
definite constant inertia matrix of the quadrotor with 
respect to B, ܨ ܨீ ௗ௧ andܨ,  are respectively the forces 
generated by the propeller system, the drag force and the 
gravity force, such as: 
 

ௗ௧ܨ  = (3) ̇ߦௗ௧ܭ
 
where ܭௗ௧ = ௗ௧௬ܭ,ௗ௧௫ܭ)݃ܽ݅݀  ௗ௧௭)  are the translationܭ,
drag coefficients: 
 

ܨீ  = (4) ܩ݉ 
 
with ܩ =  [0, 0,݃ ]் is gravity vector. 

The forces generated by the propeller system of the 
quadrotor are given by the following equations [2]: 
 

ܨ = 
టܵఏܥథܥ + ܵథܵట
థܵఏܵటܥ − టܵథܥ

థܥఏܥ
ܨ

ସ

ୀଵ

 (5)

 
  is the lift force generated by the rotor i and it’sܨ

proportional to the square of the angular speed rotation. 
Using the dynamic Eq. (2) of translation becomes: 

 
̈ߦ݉ = ܨ − ̇ߦௗ௧ܭ − (6) ܩ݉

II.2. Rotational Motion 

Using the Newton’s law about the rotation motion, the 
sum of moments is given as follow (2), the ∧ denotes the 
product vector, and Ω is the angular speed expressed in 
body fixed frame [3]: 

 
Ω = (7) ߙ̇ܯ
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with: 

ܯ = ቌ
1 0 −ܵఏ
0 థܥ ఏܵథܥ
0 −ܵథ ఏܥФܥ

ቍ    

 
߬ the moment developed by the quadrotor according 

to the body fixed frame is given by: 
 

߬ = 
ଷܨ)݈ − (ଵܨ
ସܨ)݈ − (ଶܨ

ଵܯ ଶܯ− + ଷܯ ସܯ−

൩ (8)

 
with ݈ the distance between the quadrotor center of mass 
and the rotation axe of propeller and ܯ the quadrotor 
moment developed about ݖ axis, ߬ is the aerodynamic 
friction torque: 
 

߬  = Ω (9)ܭ 
 
and  ܭ  = ௫ܭ)݃ܽ݅݀   ௭) is the aerodynamicܭ, ௬ܭ,
friction coefficients. ߬ is the gyroscopic torque, given 
by: 

߬ = ߗ ∧ ܬ 
0
0
߱

൩
ସ

ୀଵ

 (10) 

 
with ߱ is angular speed of rotor ݅, and ܬ is the rotor 
inertia. Consequently the complete dynamic model which 
governs the quadrotor is as follows: 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧߶̈ =

1
௫ܬ
൛൫ܬ௬ − ̇߰ߠ௭൯̇ܬ + തߗߠ̇ܬ + ݀ ଶܷൟ

ߠ̈ =
1
௬ܬ
൛(ܬ௭ − ̇߰̇߶(௫ܬ − തߗ̇߶ܬ + ݀ ଷܷൟ

߰̈ =
1
௭ܬ
൛൫ܬ௫ − ߠ̇̇߶௬൯ܬ + ସܷൟ                  

ݔ̈ =
1
݉
൛(ܥథܵఏܥట  +  ܵథܵట) ଵܷൟ          

ݕ̈ =
1
݉
൛(ܥథܵఏܥట −  ܵథܵట) ଵܷൟ            

ݖ̈ =
1
݉
൛(ܥథܵఏ ଵܷൟ − ݃                           

 (11) 

 
The vectors  ଵܷ, ଶܷ, ଷܷand  ସܷ are the control of the 

system to the engine airframe including forces generated 
by the motors and drag terms. 

III. Control of the Quadrotor 
The choice of this method is considering because the 

major advantages it presents [2]: 
− It ensures Lyapunov stability.  
− It ensures the robustness and all properties of the 

desired dynamics.  
− It ensures the handling of all system nonlinearities.  

The model (11) developed in the first part of this 
paper can be rewritten in the state-space form: ̇ݔ =
(ݔ)݂ + ݔ and (ݑ,ݔ)݃ = ,ଵݔ] … ,  ଵଶ]், is the state vectorݔ

of the system such as: 
 

ݔ = ̇ ݖ ݖ ݕ̇ ݕ ݔ̇ ݔ ̇߰ ߰ ߠ̇ ߠ ̇߶ ߶ ൣ ൧் (12)
 

From (11) and (12) we obtain the following state 
representation: 
 

݂ =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧
ଵݔ̇ =                                          ଶݔ
ଶݔ̇ = ܽଵݔସݔ + ܽଶݔସߗത + ܾଵ ଶܷ
ଷݔ̇ =                                          ସݔ
ସݔ̇ = ܽଷݔଶݔ + ܽସݔଶߗത + ܾଶ ଷܷ
ହݔ̇ =                                           ݔ
ݔ̇ = ܽହݔଶݔସ + ܾଷ ସܷ                  
ݔ̇ =                                           ଼ݔ

଼ݔ̇ = ଵܷ

݉
ܷ௫                                     

ଽݔ̇ =                                         ଵݔ

ଵݔ̇ = ଵܷ

݉
ܷ௬                                   

ଵଵݔ̇ =                                       ଵଶݔ

ଵଶݔ̇ =
ܿ ଵݔ ܿ ଷݔ

݉ ଵܷ − ݃                  

 (13)

 
with: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ܽଵ = ൬

௬ܫ − ௭ܫ
௫ܫ

൰ , ܽଶ = ൬
ܫ
௫ܫ
൰                 

 ܽଷ = ቆ
௭ܫ − ௫ܫ
௬ܫ

ቇ , ܽସ = ቆ−
ܫ
௬ܫ
ቇ              

 ܽହ = ൬
௫ܫ − ௬ܫ
௭ܫ

൰                                      

ܾଵ = ൬
݀
௫ܫ
൰  , ܾଶ = ቆ

݀
௬ܫ
ቇ  , ܾଷ = ൬

1
௭ܫ
൰ 

 (14)

 
and: 

 

൜
ܷ௫ = ହݔܥଷݔଵܵݔܥ)  + (ହݔଵܵݔܵ 
ܷ௬ = ହݔܥଷݔଵܵݔܥ)  − ହ) (15)ݔଵܵݔܵ 

 
We note that the system is in a form triangular 

waterfall can be controlled by Backstepping control. 

III.1. Backstepping Controller 

The Backstepping Kanellakopoulos was developed by 
[05], and inspired by the work of  Feurre & Morse [7], 
Sussmann and Kokotovic & [11]. The basic idea is to let 
some system states act as virtual inputs. 

The Backstepping uses a form of system integrators 
chain after a coordinate transformation for a triangular 
system based on the direct method of Lyapunov. The 
method consists of fragmented system into a set of 
subsystem nested descending order. 

From the, it is possible to design systematically and 
recursively controllers and corresponding Lyapunov 
functions [9] [10] [12]. 

The algorithm Backstepping is described step by step 
in the following. We consider the tracking error: 
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ݖ = ൜
ௗݔ − ොݔ                                          /݅ ∈ {1,3,5,11}
ොݔ − ௗ(ିଵ)ݔ̇ − ݅/       (ିଵ)ݖ(ିଵ)ߙ ∈ {2,4,6,12} (16)

 
Using the all Lyapunov functions as: 

 

ܸ = ൞

1
2
݅/                     ଶݖ ∈ {1,3,5,11}

1
2

ଶݖ) + ܸିଵ
ଶ )   /݅ ∈ {2,4,6,12}

 (17)

 
Application of algorithm: 

 
For i = 1: 

൝
ଵݖ = ଵௗݔ −      ොଵݔ

ଵܸ =
1
2
             ଵଶݖ

 

and: 
 

ܸ̇ଵ = ଵݖଵ̇ݖ = ଵௗݔ̇)ଵݖ −  ොଶ) (18)ݔ
 
Using the Lyapunov functions and especially ܸ̇ < 0, 

the stabilization of ݖଵ can be obtained by introducing a 
virtual control input ݔଶ such that: 

 
ොଶݔ = ଵௗݔ̇ + ଵߙ ଵ   withݖଵߙ > 0 

 
The Eq. (18) is then: ܸ̇ଵ(ݖଵ) =  ଵଶ. We consider aݖଵߙ−

variable change by making: 
 

ଶݖ = ොଶݔ − ଵௗݔ̇ −  ଵଶݖଵߙ
 

For i = 2 : 

ቐ
ଶݖ = ොଶݔ − ଵௗݔ̇ −      ଵଶݖଵߙ

ଵܸ =
1
2
ଵଶݖ +

1
2
             ଶଶݖ

 

 
and: 

ܸ̇ଵ = ଵݖଵ̇ݖ +  ଶݖଶ̇ݖ
 

Finally: 
 

ଶݖ̇ = ܽଵݔොସݔො + ܽଶݔොସߗത + ܾଵ ଶܷ − ଵௗݔ̈ + ଵ (19)ݖଵ̇ߙ
 

We achieve the control ଶܷ that give (19) equal 
to ߙଶݖଶ, with ߙଶ is positive constant, the final control is: 
 

ଶܷ =
1
ܾଵ

{−ܽଵݔොସݔ − ܽଶݔොସߗത + ߰̈ௗ + 

ଵ൫߰̇ௗߙ+ − ଶ൯ݔ − ଶݖଶߙ +  {ଵݖ
(20)

 
The term ߙଶݖଶ is added in order to stabilize ݖଵ. The 

same steps are taken again in order to extract ଵܷ,  ଷܷ, ସܷ 
(eq. (21)): 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ ଵܷ =

݉
(ଷݔܥଵݔܥ)

[݃ + ௗݖ̈ + ௗݖ̇)ߙ − (ොଵଶݔ − ଼ݖ଼ߙ + [ݖ

ܷଷ =
1
ܾଶ
−ܽଷݔොଶݔො − ܽସݔොଶߗത + ௗߠ̈ + ௗߠଷ൫̇ߙ − ොସ൯ݔ

ସݖସߙ− + ଷݖ
൨         

ܷସ =
1
ܾଷ
ൣ−ܽହݔොଶݔොସ + ߰̈ௗ + ହ൫߰̇ௗߙ − ො൯ݔ − ݖߙ +  ହ൧ݖ

 

Or them ߙ (with ∈ [1. . .8]) are positive constant. 

IV. Observer Design 
IV.1. A high Gain Observer 

The high gain observer [13] [22] is used in the case of 
uniformly observable systems [18]. This type of observer 
is interesting because it can be applied to a broad class of 
systems which includes the drone system studied. 

The dynamic model of quadrotor on state space given 
in (13), and denote ݔො the estimate of the state vector (12).  

The observer design of the state variables can be 
represented in the following state space form: 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
ො̇ଵݔ⎧ = ො̇ଶݔ +                                           ଵ߉
ො̇ଶݔ = ܽଵݔොସݔො + ܽଶݔොସߗത + ܾଵ ଶܷ + ଶ߉
ො̇ଷݔ = ොସݔ +                                           ଷ߉
ො̇ସݔ = ܽଷݔොଶݔො + ܽସݔොଶߗത + ܾଶ ଷܷ + ସ߉
ො̇ହݔ = ොݔ +                                           ହ߉
ො̇ݔ = ܽହݔොଶݔොସ + ܾଷ ସܷ +                   ߉
ො̇ݔ = ො଼ݔ +                                           ߉

ො଼̇ݔ = ଵܷ

݉
ܷ௫ො +                                     ଼߉

ො̇ଽݔ = ොଵݔ +                                         ଽ߉

ො̇ଵݔ = ଵܷ

݉
ܷ௬ො +                                 ଵ߉

ො̇ଵଵݔ = ොଵଶݔ +                                      ଵଵ߉

ො̇ଵଶݔ =
ොଷݔܥොଵݔܥ
݉ ଵܷ − ݃ +                ଵଶ߉

 (22)

 
The observer error dynamics are given by: 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
݁̇ଵ = ݁ଶ −                             ଵ߉
݁̇ଶ = ܽଵ∆௫ర௫ల + ܽଶ݁ସߗത − ଶ߉
݁̇ଷ = ݁ସ −                             ଷ߉
݁̇ସ = ܽଷ∆௫మ௫ల + ܽସ݁ଶߗത − ସ߉
݁̇ହ = ݁ −                             ହ߉
݁̇ = ܽହ∆௫మ௫ర −                   ߉
݁̇ = ଼݁ −                             ߉

଼݁̇ = ଵܷ

݉
(ܷ௫ − ܷ௫ො) −         ଼߉

݁̇ଽ = ݁ଵ −                             ଽ߉

݁̇ଵ = ଵܷ

݉
൫ܷ௬ − ܷ௬ො൯ −       ଵ߉

݁̇ଵଵ = ݁ଵଶ −                          ଵଵ߉

݁̇ଵଶ = ଵܷ

݉
( ௭ܷ − ௭ܷ̂) −       ଵଶ߉

,

 (23)

 
with: 
 

ቐ
∆௫ర௫ల= ݔସݔ − ොݔොସݔ
∆௫మ௫ల= ݔଶݔ − ොݔොଶݔ
∆௫ర௫ల= ଶݔସݔ − ොଶݔොସݔ

 (24a)
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and: 
௭ܷ = , ଷݔܥଵݔܥ ௭ܷ̂ =  ොଷ (24b)ݔܥොଵݔܥ 

 
with: 

 

ቐ
ܽଵ∆௫ర௫ల + ܽଶ݁ସߗത = ݃ଵ 
ܽଷ∆௫మ௫ల + ܽସ݁ଶߗത = ݃ଶ
ܽହ∆௫మ௫ర= ݃ଷ                    

 (25) 

 
The corrector gains it’s calculated for the estimation 

errors dynamics is stable so, it was noted that the 
observer gains are functions of measurement errors such 
as: 

߉ = ݈(݁ଵ, ݁ଷ, ݁ହ, ݁, ݁ଽ, ݁ଵଵ) (26)
 
We take the first two equations of dynamic errors and 

explain how to choose the observer gains: 
 

൜݁̇ଵ = ݁ଶ − ଵ߉
݁̇ଶ = ݃ଵ − ଶ߉

 (27)
 

with: 
 

൜߉ଵ = ଵ݁ଵܭ
ଶ߉ = ଶ݁ଵܭ

   with:  ℛାଶ (28)(ଶܭ,ଵܭ)

 
Gains ܭଵ,ܭଶ are chosen such that: ܭଵ = భ

ఌ
ଶܭ, = మ

ఌమ
. 

First one chooses the gains to be exponential 
convergence of the linear part of the error. Second, we 
consider the nonlinear part as a perturbation and thus try 
to annul: if we choose ߝ ≪ 1, and we do a change of 
variable ߓଵ = భ

ఌ
ଶߓ, = ݁ଶ. 

We note that although the decrease in the parameter ε 
reduces the error of observation, and there is a 
convergence in minimum time. 

The same steps are followed to extract others corrector 
gains. 

IV.2. Sliding Mode Observer 

In order to increase the robustness against modeling 
errors and uncertainty, observers based on the theory of 
variable structure systems are proposed [14] [21].  

They are generally used for uncertain nonlinear 
dynamical systems. We present syntheses of observer 
[1][08] applied for nonlinear systems described by (13). 

We define a state observer whose structure is: 
 

ො̇ݔ = መ݂(ݔො,ݑ,ݕ) + ො ߳ ℛ (29)ݔ ௦ withܫ߉
 

and መ݂ of the model ݂,߉ is the gain matrix (nxr) 
determining and ܫ௦ is a vector (rx1): 
 

௦ܫ = ,(ଵݏ)݊݃݅ݏ] (ଶݏ)݊݃݅ݏ …  ்[(ݏ)݊݃݅ݏ
 

with  ݏ = ݕ) −  .(ොݕ
The surface dimension r given by  ܵ =  0, is attractive 

if: ܵ̇ ܵ < 0, ݅ ߳{1, … ,   ,Lyapunov  condition verify ,{ݎ
This condition defines the area of the sliding mode. 

The second stapes, the gain matrix patches is to satisfy 
the following invariance condition: 

 
ݏ̇ = 0 and ݏ = 0 

IV.3. Application 

Consider the model on state space (13) of the 
quadrotor, and the observer design of the state variables 
represented in (22) state space, and the observer error 
dynamics are given in (23), we can calculate the gain 
matrix by nonlinear sliding mode observer, we take the 
two first Eqs. (27) (28) of dynamic errors and explain 
how to choose the observer gains: 
 

൜݁̇ଵ = ݁ଶ − ଵ߉
݁̇ଶ = ݃ଵ − ଶ߉

 (30)
 
with: 

൜߉ଵ = (ଵ݁)݁݃݅ݏଵߣ
ଶ߉ = (31) (ଵ݁)݁݃݅ݏଶߣ

 
Errors should converge to the equilibrium values in 

two steps: 
Step 1: We consider only the first observation error: 

 

݁̇ଵ = ݁ଶ − (32) (ଵ݁)݁݃݅ݏଵߣ
 

Slippage observation errors on the sliding surface is 
guaranteed by ߣଵ. Let the Lyapunov function: ଵܸ = భమ

ଶ
, 

and their derivative ܸ̇ଵ = ݁ଵ(݁ଶ −  with a , ((ଵ݁)݁݃݅ݏଵߣ
choice of ߣଵ > |݁ଶ| for ݐ <  ଵ observation errorݐ
converges to zero after a finite time ݐଵ. 

Step 2: In this step ߣଶ imposes the dynamic 
observation errors on the sliding surface. We set: ଶܸ =
భమ

ଶ
+ మమ

ଶ
, and drive ܸ̇ଶ = ݁ଶ(݃ଵ − ((ଵ݁)݁݃݅ݏଶߣ = ݁ଶ(݃ଵ −

ଶߣ
మ
ఒభ

):, choosing ఒమ
ఒభ

> |݃ଵ|. So after ݐଵ, the sliding 
surface is reached and the error ݁ଶ converges to zero in a 
finite time ݐଶ <  ଵ. The same steps are followed toݐ
extract others corrector gains, so: 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
ଷ߉ = (ଷ݁)݁݃݅ݏଷߣ
ସ߉ = (ଷ݁)݁݃݅ݏସߣ
ହ߉ = (ହ݁)݁݃݅ݏହߣ
߉ = (ହ݁)݁݃݅ݏߣ
߉ = (݁)݁݃݅ݏߣ

      

଼߉ =       (݁)݁݃݅ݏ଼ߣ
ଽ߉ =       (ଽ݁)݁݃݅ݏଽߣ
ଵ߉ =   (ଽ݁)݁݃݅ݏଵߣ
ଵଵ߉ = (ଵଵ݁)݁݃݅ݏଵଵߣ
ଵଶ߉ = (ଵଵ݁)݁݃݅ݏଵଶߣ

 (33)

V. Simulations Results 
The simulation results are obtained based on the 

following real parameters [9], an application has been 
run with wind disturbance (Fz) along the z direction, the 
strength is set to 6N, occurring at t=10s. 
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V.1. A High Gain Observer 

Fig. 3, illustrates the controlled states  using 
backstepping controller where (U1,Ux,Uy), denote the 
command signals for z, x and y directions respectively. 

Fig. 4, shows the perfect convergence from tracking 
trajectories, and the good estimated for the high gain 
observer. 

Fig. 5, show the Zoom of the  acceptable error in 
direction z response, this error present because of the 
introduce of the wind disturbance, The annihilation of be 
possible her in addition the integrator effect, but the 
convergence of observers states is perfectly. 

 

 

 
 

Fig. 3. Backstepping control signals with wind disturbance (6N) 
 

 
 

Fig. 4. Tracking simulation results with wind disturbance (6N) 

 
 

Fig. 5. Tracking simulation results Zoom with wind disturbance (6N) 
 

 
 

Fig. 6. The pitch  (theta) roll (phi) and yaw (psi) angles 
 

 
 

Fig. 7. Linear velocity results 
 

 
 

Fig. 8. Angular velocity results 
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Figure 6, represents the results of the real Euler’s 
angles and their estimated, are tend to zero value after 
finished of the maneuverer. 

Figs. 7 and 8, show the Linear velocity and the 
angular velocity results respectively, and notice the 
efficiency of the observer. 

Fig. 9, illustrates the tracking errors with presence the 
wind disturbance, we notice that the tracking is effective, 
and the errors which vanish after a finite time with a 
perfect convergence. But the error along z direction is 
tend to constant value near to zero because of the 
presence of disturbance, this which confirm the result in 
Fig. 4. Fig. 10 and 11, represents the observer errors, of 
the position (x,y,z), and the linear velocity (̇ݔ, ,ݕ̇  of the (ݖ̇
X4-flyer. We notice that the observation is good since the 
error tend to zero, This signifying the perfect 
convergence. Fig. 12, shows the perfect convergence and 
following of desired trajectory by the real one and the 
observer states the evolution of the Drone and its 
stabilization in 3D displacement. 

 

 
 

Fig. 9. Tracking errors 

V.2. Sliding Mode Observer 

It is concluded from the simulations, made without 
wind disturbance, that the sliding mode observer (SMO) 
gives satisfactory results. 

 

 
 

Fig. 10. Observation errors (x,y,z) 

 
 

Fig. 11. Observer error for linear velocity 
 

 
 

Fig. 12. Tracking trajectory in 3D 
 

 

 
 

Fig. 13. Backstepping control signals with wind disturbance (6N) 
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The results of estimation errors given in Figs. 20 and 
21 of position and linear velocity respectively show the 
efficiency of the observer, and notice the sliding mode 
observer give the beset result compared with a high gain 
observer (HGO). Fig. 19 see the tracking errors which 
vanish after a finite time with a perfect convergence.  

When wind disturbances are introduced the Figs. 14, 
15 and 19 reflect the robustness of the close loop 
observer–controller, and the perfect convergence of the 

real and estimate states given by (SMO) compared with 
(HGO). Figs. 16, 17 and 18, are present the real and 
estimate Euler’s angles, Linear velocity and the angular 
velocity results respectively, we notice the beset 
convergence and the efficiency of the observer (SMO). 
Fig. 22, illustrate. The 3D displacement with straight 
connection, we notice the good convergence of the real 
and the observer states to desired trajectory. 

 

 
 

Fig. 14. Tracking simulation results with wind disturbance (6N) 
 

 
 

Fig. 15. Tracking simulation results Zoom with wind disturbance (6N) 
 

 
 

Fig. 16. The pitch (ߠ) roll (߶) and yaw (߰) angles. 

 

 
 

Fig. 17. Linear velocity results 
 

 
 

Fig. 18. Angular velocity results 
 

 
 

Fig. 19. Tracking errors 
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Fig. 20. Observation errors (x,y,z) 
 

 
 

Fig. 21. Observer error for linear velocity 
 

 
 

Fig. 22. Tracking trajectory in 3D 

VI. Conclusion 
In this paper, we studied a dynamic modeling  of flyer 

engine called X4-flayer. We have considered in this work 
the stabilizing/tracking control and the observation 
problem for the three decoupled displacements of the 
engine. The objectives are to test the capability of the 
two observers called sliding mode and high gain 
observer. A comparison between SMO and HGO is given 
and discuss. 

The use of an observer sliding mode in the 
Backstepping control of quadrotor seems simple and 
effective, with their robust appearance, the sliding mode 
bring to scheme of control the robustness via the 
observer through a rapid convergence and guarantee 
estimated states to real states, the command completes 
the objectives of stability and performance robustness 
with the estimated states. 

Like prospects to be approached in the future, the 
consideration of the problem of asymmetry in the 
structure of the quadrotor which can considerably 
deteriorate the stability and the performances of any even 
robust order, of the moment which count does not hold 
any. The higher order sliding mode observer seems also 
very interesting to apply to a system such as the 
quadrotor. 
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